Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A novel AI-based approach for modelling the fate, transportation and prediction of chromium in rivers and agricultural crops: A case study in Iran

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F23%3A00011213" target="_blank" >RIV/46747885:24620/23:00011213 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S014765132300773X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S014765132300773X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ecoenv.2023.115269" target="_blank" >10.1016/j.ecoenv.2023.115269</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A novel AI-based approach for modelling the fate, transportation and prediction of chromium in rivers and agricultural crops: A case study in Iran

  • Popis výsledku v původním jazyce

    Chromium (Cr) pollution caused by the discharge of industrial wastewater into rivers poses a significant threat to the environment, aquatic and human life, as well as agricultural crops irrigated by these rivers. This paper employs artificial intelligence (AI) to introduce a new framework for modeling the fate, transport, and estimation of Cr from its point of discharge into the river until it is absorbed by agricultural products. The framework is demonstrated through its application to the case study River, which serves as the primary water resource for tomato production irrigation in Mashhad city, Iran. Measurements of Cr concentration are taken at three different river depths and in tomato leaves from agricultural lands irrigated by the river, allowing for the identification of bioaccumulation effects. By employing boundary conditions and smart algorithms, various aspects of control systems are evaluated. The concentration of Cr in crops exhibits an accumulative trend, reaching up to 1.29 µg/g by the time of harvest. Using data collected from the case study and exploring different scenarios, AI models are developed to estimate the Cr concentration in tomato leaves. The tested AI models include linear regression (LR), neural network (NN) classifier, and NN regressor, yielding goodness-of-fit values (R2) of 0.931, 0.874, and 0.946, respectively. These results indicate that the NN regressor is the most accurate model, followed by the LR, for estimating Cr levels in tomato leaves.

  • Název v anglickém jazyce

    A novel AI-based approach for modelling the fate, transportation and prediction of chromium in rivers and agricultural crops: A case study in Iran

  • Popis výsledku anglicky

    Chromium (Cr) pollution caused by the discharge of industrial wastewater into rivers poses a significant threat to the environment, aquatic and human life, as well as agricultural crops irrigated by these rivers. This paper employs artificial intelligence (AI) to introduce a new framework for modeling the fate, transport, and estimation of Cr from its point of discharge into the river until it is absorbed by agricultural products. The framework is demonstrated through its application to the case study River, which serves as the primary water resource for tomato production irrigation in Mashhad city, Iran. Measurements of Cr concentration are taken at three different river depths and in tomato leaves from agricultural lands irrigated by the river, allowing for the identification of bioaccumulation effects. By employing boundary conditions and smart algorithms, various aspects of control systems are evaluated. The concentration of Cr in crops exhibits an accumulative trend, reaching up to 1.29 µg/g by the time of harvest. Using data collected from the case study and exploring different scenarios, AI models are developed to estimate the Cr concentration in tomato leaves. The tested AI models include linear regression (LR), neural network (NN) classifier, and NN regressor, yielding goodness-of-fit values (R2) of 0.931, 0.874, and 0.946, respectively. These results indicate that the NN regressor is the most accurate model, followed by the LR, for estimating Cr levels in tomato leaves.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30108 - Toxicology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Ecotoxicology and Environmental Safety

  • ISSN

    0147-6513

  • e-ISSN

  • Svazek periodika

    263

  • Číslo periodika v rámci svazku

    SEP 15

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    115269

  • Kód UT WoS článku

    001045320700001

  • EID výsledku v databázi Scopus

    2-s2.0-85165351634