A novel AI-based approach for modelling the fate, transportation and prediction of chromium in rivers and agricultural crops: A case study in Iran
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F23%3A00011213" target="_blank" >RIV/46747885:24620/23:00011213 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S014765132300773X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S014765132300773X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecoenv.2023.115269" target="_blank" >10.1016/j.ecoenv.2023.115269</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel AI-based approach for modelling the fate, transportation and prediction of chromium in rivers and agricultural crops: A case study in Iran
Popis výsledku v původním jazyce
Chromium (Cr) pollution caused by the discharge of industrial wastewater into rivers poses a significant threat to the environment, aquatic and human life, as well as agricultural crops irrigated by these rivers. This paper employs artificial intelligence (AI) to introduce a new framework for modeling the fate, transport, and estimation of Cr from its point of discharge into the river until it is absorbed by agricultural products. The framework is demonstrated through its application to the case study River, which serves as the primary water resource for tomato production irrigation in Mashhad city, Iran. Measurements of Cr concentration are taken at three different river depths and in tomato leaves from agricultural lands irrigated by the river, allowing for the identification of bioaccumulation effects. By employing boundary conditions and smart algorithms, various aspects of control systems are evaluated. The concentration of Cr in crops exhibits an accumulative trend, reaching up to 1.29 µg/g by the time of harvest. Using data collected from the case study and exploring different scenarios, AI models are developed to estimate the Cr concentration in tomato leaves. The tested AI models include linear regression (LR), neural network (NN) classifier, and NN regressor, yielding goodness-of-fit values (R2) of 0.931, 0.874, and 0.946, respectively. These results indicate that the NN regressor is the most accurate model, followed by the LR, for estimating Cr levels in tomato leaves.
Název v anglickém jazyce
A novel AI-based approach for modelling the fate, transportation and prediction of chromium in rivers and agricultural crops: A case study in Iran
Popis výsledku anglicky
Chromium (Cr) pollution caused by the discharge of industrial wastewater into rivers poses a significant threat to the environment, aquatic and human life, as well as agricultural crops irrigated by these rivers. This paper employs artificial intelligence (AI) to introduce a new framework for modeling the fate, transport, and estimation of Cr from its point of discharge into the river until it is absorbed by agricultural products. The framework is demonstrated through its application to the case study River, which serves as the primary water resource for tomato production irrigation in Mashhad city, Iran. Measurements of Cr concentration are taken at three different river depths and in tomato leaves from agricultural lands irrigated by the river, allowing for the identification of bioaccumulation effects. By employing boundary conditions and smart algorithms, various aspects of control systems are evaluated. The concentration of Cr in crops exhibits an accumulative trend, reaching up to 1.29 µg/g by the time of harvest. Using data collected from the case study and exploring different scenarios, AI models are developed to estimate the Cr concentration in tomato leaves. The tested AI models include linear regression (LR), neural network (NN) classifier, and NN regressor, yielding goodness-of-fit values (R2) of 0.931, 0.874, and 0.946, respectively. These results indicate that the NN regressor is the most accurate model, followed by the LR, for estimating Cr levels in tomato leaves.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30108 - Toxicology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ecotoxicology and Environmental Safety
ISSN
0147-6513
e-ISSN
—
Svazek periodika
263
Číslo periodika v rámci svazku
SEP 15
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
115269
Kód UT WoS článku
001045320700001
EID výsledku v databázi Scopus
2-s2.0-85165351634