A Comprehensive Platform for Air Pollution Control System Operation in Smart Cities of Developing Countries: A Case Study of Tehran
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F23%3A00012542" target="_blank" >RIV/46747885:24620/23:00012542 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.tultech.eu/index.php/eil/article/view/13" target="_blank" >https://journals.tultech.eu/index.php/eil/article/view/13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15157/eil.2023.1.1.10-27" target="_blank" >10.15157/eil.2023.1.1.10-27</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Comprehensive Platform for Air Pollution Control System Operation in Smart Cities of Developing Countries: A Case Study of Tehran
Popis výsledku v původním jazyce
Controlling air pollution in megacities is crucial from both a health and environmental perspective. Air pollution is a pervasive problem in these densely populated cities and must be effectively managed to promote sustainability. This study presents a framework for the intelligent management of air pollution control systems in developing nations. The framework was developed through the use of an expert agreement model involving five managers from Tehran. The results indicate that the Decision Support System (DSS) is equipped with calibrated sensors for monitoring air quality. Additionally, the concentration of air pollutants can be determined through the application of machine learning algorithms and the analysis of historical data. Rapid response methods are then applied to mitigate the acute and chronic effects of air pollution. The DSS also incorporates citizens‘ feedback to evaluate the effectiveness of air pollution control measures. Implementing this model in developing nations‘ smart cities can help achieve several of the United Nations‘ Sustainable Development Goals (SDGs), such as good health and well-being, sustainable cities and communities, climate action, and life on land.
Název v anglickém jazyce
A Comprehensive Platform for Air Pollution Control System Operation in Smart Cities of Developing Countries: A Case Study of Tehran
Popis výsledku anglicky
Controlling air pollution in megacities is crucial from both a health and environmental perspective. Air pollution is a pervasive problem in these densely populated cities and must be effectively managed to promote sustainability. This study presents a framework for the intelligent management of air pollution control systems in developing nations. The framework was developed through the use of an expert agreement model involving five managers from Tehran. The results indicate that the Decision Support System (DSS) is equipped with calibrated sensors for monitoring air quality. Additionally, the concentration of air pollutants can be determined through the application of machine learning algorithms and the analysis of historical data. Rapid response methods are then applied to mitigate the acute and chronic effects of air pollution. The DSS also incorporates citizens‘ feedback to evaluate the effectiveness of air pollution control measures. Implementing this model in developing nations‘ smart cities can help achieve several of the United Nations‘ Sustainable Development Goals (SDGs), such as good health and well-being, sustainable cities and communities, climate action, and life on land.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Environmental Industry Letters :
ISSN
2806-2965
e-ISSN
—
Svazek periodika
1
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
EE - Estonská republika
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—