Enhancing performance and durability of PVDF-ceramic composite membranes in microbial fuel cells using natural rhamnolipids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F24%3A00012473" target="_blank" >RIV/46747885:24620/24:00012473 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0378775324012096?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0378775324012096?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpowsour.2024.235257" target="_blank" >10.1016/j.jpowsour.2024.235257</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing performance and durability of PVDF-ceramic composite membranes in microbial fuel cells using natural rhamnolipids
Popis výsledku v původním jazyce
Ceramic membranes are widely used in microbial fuel cells (MFCs) owing to their cost-effectiveness and availability. However, these membranes often face challenges such as biofouling and negative mass-transfer effects. This study explored the use of a polymer layer to mitigate these issues, focusing on a polyvinylidene fluoride (PVDF) nanofibre membrane with various surface modifications. The modifications included alkaline treatment (PVDF-OH), rhamnolipids treatment (PVDF/BS), and a combination of both (PVDF-OH/BS). The ceramic membrane integrated with PVDF-OH/BS achieved the highest power density of 13.8 W m−3, which was 38 % higher than that of the unmodified ceramic membrane. Additionally, during the long-term study (days 90–101), the Ceramic + PVDF-OH/BS maintained a 64 % higher power performance compared to the unmodified ceramic membrane, indicating superior antifouling properties. Electrochemical and surface characterisation revealed that rhamnolipid-modified PVDF nanofibers enhanced fouling resistance. The findings demonstrate that natural biosurfactants which can be produced in situ within MFCs, can form a protective layer over membranes and significantly enhance their long-term power performance. This study represents the first instance of using natural microbial biosurfactants to improve membrane efficiency in a bioelectrochemical system.
Název v anglickém jazyce
Enhancing performance and durability of PVDF-ceramic composite membranes in microbial fuel cells using natural rhamnolipids
Popis výsledku anglicky
Ceramic membranes are widely used in microbial fuel cells (MFCs) owing to their cost-effectiveness and availability. However, these membranes often face challenges such as biofouling and negative mass-transfer effects. This study explored the use of a polymer layer to mitigate these issues, focusing on a polyvinylidene fluoride (PVDF) nanofibre membrane with various surface modifications. The modifications included alkaline treatment (PVDF-OH), rhamnolipids treatment (PVDF/BS), and a combination of both (PVDF-OH/BS). The ceramic membrane integrated with PVDF-OH/BS achieved the highest power density of 13.8 W m−3, which was 38 % higher than that of the unmodified ceramic membrane. Additionally, during the long-term study (days 90–101), the Ceramic + PVDF-OH/BS maintained a 64 % higher power performance compared to the unmodified ceramic membrane, indicating superior antifouling properties. Electrochemical and surface characterisation revealed that rhamnolipid-modified PVDF nanofibers enhanced fouling resistance. The findings demonstrate that natural biosurfactants which can be produced in situ within MFCs, can form a protective layer over membranes and significantly enhance their long-term power performance. This study represents the first instance of using natural microbial biosurfactants to improve membrane efficiency in a bioelectrochemical system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Power Sources
ISSN
0378-7753
e-ISSN
—
Svazek periodika
621
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
001302021800001
EID výsledku v databázi Scopus
2-s2.0-85202024414