Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Numerical simulation of inviscid fluid flow in time-dependent domains

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47718684%3A_____%2F15%3A%230000627" target="_blank" >RIV/47718684:_____/15:#0000627 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Numerical simulation of inviscid fluid flow in time-dependent domains

  • Popis výsledku v původním jazyce

    The paper deals with the inviscid compressible fluid flow simulation in domains with deforming boundaries. The computational code for the numerical solution of the non-linear system of Euler equations in time-dependent domains was developed as the first step of solution of fluid-structure interaction problem. Arbitrary Lagrangian - Eulerian (ALE) description of continuum, combining Eulerian and Lagrangian approach, was used. ALE formulation of the non-linear system of Euler equations. The finite volume method, adapted for triangular computational grids, was used for the spatial discretization and the inviscid fluxes were discretized by explicit Lax-Friedrichs scheme. The computational code was validated using the well-known case of inviscid fluid flow around the airfoil NACA 0012. The boundary conditions and simulation parameters were set according to the conditions of experimental measurement and the pitching motion of the body was defined by a time-dependent function. The algorithm for the mesh deformation, suitable for the problem of flow around vibrating rigid body, is based on interpolation of coordinates by using polynomial blending function. The results of a gas flow around the vibrating profile are presented and compared with numerical results of other authors and experimental data.

  • Název v anglickém jazyce

    Numerical simulation of inviscid fluid flow in time-dependent domains

  • Popis výsledku anglicky

    The paper deals with the inviscid compressible fluid flow simulation in domains with deforming boundaries. The computational code for the numerical solution of the non-linear system of Euler equations in time-dependent domains was developed as the first step of solution of fluid-structure interaction problem. Arbitrary Lagrangian - Eulerian (ALE) description of continuum, combining Eulerian and Lagrangian approach, was used. ALE formulation of the non-linear system of Euler equations. The finite volume method, adapted for triangular computational grids, was used for the spatial discretization and the inviscid fluxes were discretized by explicit Lax-Friedrichs scheme. The computational code was validated using the well-known case of inviscid fluid flow around the airfoil NACA 0012. The boundary conditions and simulation parameters were set according to the conditions of experimental measurement and the pitching motion of the body was defined by a time-dependent function. The algorithm for the mesh deformation, suitable for the problem of flow around vibrating rigid body, is based on interpolation of coordinates by using polynomial blending function. The results of a gas flow around the vibrating profile are presented and compared with numerical results of other authors and experimental data.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    BK - Mechanika tekutin

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TE01020068" target="_blank" >TE01020068: Centrum výzkumu a experimentálního vývoje spolehlivé energetiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů