Some statistical models vs. models based on SC for high frequency financial time series applied to bonds of commercial banks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F14%3A%230005348" target="_blank" >RIV/47813059:19240/14:#0005348 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Some statistical models vs. models based on SC for high frequency financial time series applied to bonds of commercial banks
Popis výsledku v původním jazyce
In neural networks modeling approach, a non-linear model is estimated based on machine learning methods. The study discusses, analytically and numerically demonstrates the quality and interpretability of the obtained prediction accuracy results from prediction models based on advanced statistical methods and models based on neural networks (intelligent methods). Both proposed approaches are applied to the financial time series of s of VUB bond prices. We found that it is possible to achieve significantrisk reduction in managerial decision-making by applying intelligent forecasting models based on the latest information technologies. In a comparative study is shown, that both presented modeling approaches are able to model and predict high frequency data with reasonable accuracy, but the neural network approach is more effective.
Název v anglickém jazyce
Some statistical models vs. models based on SC for high frequency financial time series applied to bonds of commercial banks
Popis výsledku anglicky
In neural networks modeling approach, a non-linear model is estimated based on machine learning methods. The study discusses, analytically and numerically demonstrates the quality and interpretability of the obtained prediction accuracy results from prediction models based on advanced statistical methods and models based on neural networks (intelligent methods). Both proposed approaches are applied to the financial time series of s of VUB bond prices. We found that it is possible to achieve significantrisk reduction in managerial decision-making by applying intelligent forecasting models based on the latest information technologies. In a comparative study is shown, that both presented modeling approaches are able to model and predict high frequency data with reasonable accuracy, but the neural network approach is more effective.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Material Research
ISSN
1022-6680
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
neuvedeno
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
6
Strana od-do
435-440
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—