Limits on thickness and efficiency of Polish doughnuts in application to the ULX sources
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F16%3AN0000137" target="_blank" >RIV/47813059:19240/16:N0000137 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.aanda.org/articles/aa/abs/2016/03/aa27878-15/aa27878-15.html" target="_blank" >http://www.aanda.org/articles/aa/abs/2016/03/aa27878-15/aa27878-15.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/201527878" target="_blank" >10.1051/0004-6361/201527878</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Limits on thickness and efficiency of Polish doughnuts in application to the ULX sources
Popis výsledku v původním jazyce
Polish doughnuts (PDs) are geometrically thick disks that rotate with super-Keplerian velocities in their innermost parts, and whose long and narrow funnels along rotation axes collimate the emerging radiation into beams. In this paper we construct an extremal family of PDs that maximize both geometrical thickness and radiative efficiency. We then derive upper limits for these quantities and subsequently for the related ability to collimate radiation. PDs with such extreme properties may explain the observed properties of ultraluminous X-ray sources without the need for the black hole masses to exceed ~10 M⊙. However, we show that strong advective cooling, which is expected to be one of the dominant cooling mechanisms in accretion flows with super-Eddington accretion rates, tends to reduce the geometrical thickness and luminosity of PDs substantially. We also show that the beamed radiation emerging from the PD funnels corresponds to isotropic luminosities that obey $L_{col} ≈ 0.1 dot{M} c^2$ for $dot{M} >> dot{M}_{Edd}$, and not the familiar and well-known logarithmic relation, $L ~ ln dot{M}$.
Název v anglickém jazyce
Limits on thickness and efficiency of Polish doughnuts in application to the ULX sources
Popis výsledku anglicky
Polish doughnuts (PDs) are geometrically thick disks that rotate with super-Keplerian velocities in their innermost parts, and whose long and narrow funnels along rotation axes collimate the emerging radiation into beams. In this paper we construct an extremal family of PDs that maximize both geometrical thickness and radiative efficiency. We then derive upper limits for these quantities and subsequently for the related ability to collimate radiation. PDs with such extreme properties may explain the observed properties of ultraluminous X-ray sources without the need for the black hole masses to exceed ~10 M⊙. However, we show that strong advective cooling, which is expected to be one of the dominant cooling mechanisms in accretion flows with super-Eddington accretion rates, tends to reduce the geometrical thickness and luminosity of PDs substantially. We also show that the beamed radiation emerging from the PD funnels corresponds to isotropic luminosities that obey $L_{col} ≈ 0.1 dot{M} c^2$ for $dot{M} >> dot{M}_{Edd}$, and not the familiar and well-known logarithmic relation, $L ~ ln dot{M}$.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BN - Astronomie a nebeská mechanika, astrofyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.20.0071" target="_blank" >EE2.3.20.0071: Podpora zapojení do mezinárodních sítí teoretického a observačního výzkumu v oblasti relativistické astrofyziky kompaktních objektů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astronomy and Astrophysics
ISSN
0004-6361
e-ISSN
—
Svazek periodika
587
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
7
Strana od-do
'A38-1'-'A38-7'
Kód UT WoS článku
000371589800049
EID výsledku v databázi Scopus
2-s2.0-84958279987