Axisymmetric black holes allowing for separation of variables in the Klein-Gordon and Hamilton-Jacobi equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F18%3AA0000266" target="_blank" >RIV/47813059:19240/18:A0000266 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.084044" target="_blank" >https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.084044</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevD.97.084044" target="_blank" >10.1103/PhysRevD.97.084044</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Axisymmetric black holes allowing for separation of variables in the Klein-Gordon and Hamilton-Jacobi equations
Popis výsledku v původním jazyce
We determine the class of axisymmetric and asymptotically flat black-hole spacetimes for which the test Klein-Gordon and Hamilton-Jacobi equations allow for the separation of variables. The known Kerr, Kerr-Newman, Kerr-Sen and some other black-hole metrics in various theories of gravity are within the class of spacetimes described here. It is shown that although the black-hole metric in the Einstein-dilaton-Gauss-Bonnet theory does not allow for the separation of variables (at least in the considered coordinates), for a number of applications it can be effectively approximated by a metric within the above class. This gives us some hope that the class of spacetimes described here may be not only generic for the known solutions allowing for the separation of variables, but also a good approximation for a broader class of metrics, which does not admit such separation. Finally, the generic form of the axisymmetric metric is expanded in the radial direction in terms of the continued fractions and the connection with other black-hole parametrizations is discussed.
Název v anglickém jazyce
Axisymmetric black holes allowing for separation of variables in the Klein-Gordon and Hamilton-Jacobi equations
Popis výsledku anglicky
We determine the class of axisymmetric and asymptotically flat black-hole spacetimes for which the test Klein-Gordon and Hamilton-Jacobi equations allow for the separation of variables. The known Kerr, Kerr-Newman, Kerr-Sen and some other black-hole metrics in various theories of gravity are within the class of spacetimes described here. It is shown that although the black-hole metric in the Einstein-dilaton-Gauss-Bonnet theory does not allow for the separation of variables (at least in the considered coordinates), for a number of applications it can be effectively approximated by a metric within the above class. This gives us some hope that the class of spacetimes described here may be not only generic for the known solutions allowing for the separation of variables, but also a good approximation for a broader class of metrics, which does not admit such separation. Finally, the generic form of the axisymmetric metric is expanded in the radial direction in terms of the continued fractions and the connection with other black-hole parametrizations is discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/GB14-37086G" target="_blank" >GB14-37086G: Centrum Alberta Einsteina pro gravitaci a astrofyziku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review D
ISSN
2470-0010
e-ISSN
2470-0029
Svazek periodika
97
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
„084044-1“-„084044-14“
Kód UT WoS článku
000430820500005
EID výsledku v databázi Scopus
2-s2.0-85047142096