P systems attacking hard problems beyond NP: a survey
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F19%3AA0000495" target="_blank" >RIV/47813059:19240/19:A0000495 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s41965-019-00017-y" target="_blank" >https://doi.org/10.1007/s41965-019-00017-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s41965-019-00017-y" target="_blank" >10.1007/s41965-019-00017-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
P systems attacking hard problems beyond NP: a survey
Popis výsledku v původním jazyce
In the field of membrane computing, a great attention is traditionally paid to the results demonstrating a theoretical possibility to solve NP-complete problems in polynomial time by means of various models of P systems. A bit less common is the fact that almost all models of P systems with this capability are actually stronger: some of them are able to solve PSPACE-complete problems in polynomial time, while others have been recently shown to characterize the class P^#P (which is conjectured to be strictly included in PSPACE). A large part of these results has appeared quite recently. In this survey, we focus on strong models of membrane systems which have the potential to solve hard problems belonging to classes containing NP. These include P systems with active membranes, P systems with proteins on membranes and tissue P systems, as well as P systems with symport/antiport and membrane division and, finally, spiking neural P systems. We provide a survey of computational complexity results of these membrane models, pointing out some features providing them with their computational strength. We also mention a sequence of open problems related to these topics.
Název v anglickém jazyce
P systems attacking hard problems beyond NP: a survey
Popis výsledku anglicky
In the field of membrane computing, a great attention is traditionally paid to the results demonstrating a theoretical possibility to solve NP-complete problems in polynomial time by means of various models of P systems. A bit less common is the fact that almost all models of P systems with this capability are actually stronger: some of them are able to solve PSPACE-complete problems in polynomial time, while others have been recently shown to characterize the class P^#P (which is conjectured to be strictly included in PSPACE). A large part of these results has appeared quite recently. In this survey, we focus on strong models of membrane systems which have the potential to solve hard problems belonging to classes containing NP. These include P systems with active membranes, P systems with proteins on membranes and tissue P systems, as well as P systems with symport/antiport and membrane division and, finally, spiking neural P systems. We provide a survey of computational complexity results of these membrane models, pointing out some features providing them with their computational strength. We also mention a sequence of open problems related to these topics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Membrane Computing
ISSN
2523-8906
e-ISSN
—
Svazek periodika
1
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
11
Strana od-do
198-208
Kód UT WoS článku
000651468300004
EID výsledku v databázi Scopus
2-s2.0-85081198009