Seeking Relevant Information Sources
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F19%3AA0000685" target="_blank" >RIV/47813059:19240/19:A0000685 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9119332" target="_blank" >https://ieeexplore.ieee.org/document/9119332</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/Informatics47936.2019.9119332" target="_blank" >10.1109/Informatics47936.2019.9119332</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Seeking Relevant Information Sources
Popis výsledku v původním jazyce
In this paper we deal with the problem of seeking relevant information sources selected from scientific or other electronic publications. In the era of information surfeit, it is getting more and more difficult to extract relevant and reliable sources of information from the huge number of e-sources. The starting point is user's query for a given concept or topic. Our algorithm applies machine learning methods in order to propose hypothetic explications of the sought terms based on pieces of information extracted from the potentially relevant e-sources. Hypotheses, formalized in the TIL-Script language, are incrementally built by applying heuristic functions. The user thus obtains as closed approximations of the meaning of the sought terms as possible that at the same time provide fine-grained keyword definitions. As a result, it should be much easier to decide which of the e-sources are relevant for user's interest.
Název v anglickém jazyce
Seeking Relevant Information Sources
Popis výsledku anglicky
In this paper we deal with the problem of seeking relevant information sources selected from scientific or other electronic publications. In the era of information surfeit, it is getting more and more difficult to extract relevant and reliable sources of information from the huge number of e-sources. The starting point is user's query for a given concept or topic. Our algorithm applies machine learning methods in order to propose hypothetic explications of the sought terms based on pieces of information extracted from the potentially relevant e-sources. Hypotheses, formalized in the TIL-Script language, are incrementally built by applying heuristic functions. The user thus obtains as closed approximations of the meaning of the sought terms as possible that at the same time provide fine-grained keyword definitions. As a result, it should be much easier to decide which of the e-sources are relevant for user's interest.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 IEEE 15th International Scientific Conference on Informatics
ISBN
9781728131818
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
255-260
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Montreal, Canada
Místo konání akce
Poprad, Slovakia
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—