Local Extremes of Selected Industry 4.0 Indicators in the European Space—Structure for Autonomous Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F20%3AA0000642" target="_blank" >RIV/47813059:19240/20:A0000642 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/47813059:19520/20:A0000182
Výsledek na webu
<a href="https://www.mdpi.com/1911-8074/13/1/13" target="_blank" >https://www.mdpi.com/1911-8074/13/1/13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/jrfm13010013" target="_blank" >10.3390/jrfm13010013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Local Extremes of Selected Industry 4.0 Indicators in the European Space—Structure for Autonomous Systems
Popis výsledku v původním jazyce
In the past, the social and economic impacts of industrial revolutions have been clearly identified. The current Fourth Industrial Revolution (Industry 4.0) is haracterized by robotization, digitization, and automation. This will transform the production processes, but also the services or financial markets. Specific groups of people and activities may be replaced by new information technologies. Changes represent an extreme risk of economic instability and social change. The authors described available published sources and selected a group of indicators related to Industry 4.0. The indicators were divided into five groups and summarized by negative or positive impact. The indicators were analyzed by precedence analysis. Extremes in the geographical dislocation of actor values were found. Furthermore, spatial dependencies in the distribution of these extremes were found by calculating multiple (long) precedencies. European countries were classified according to individual groups of indicators. The results were compared with the real values of the indicators. The indicated extremes and their distribution will allow to predict changes in the behavior of the population given by changes in the socio-economic environment. The behavior of the population can be described by the behavior of autonomous systems on selected infrastructure. The paper presents research related to the creation of a multiagent model for the prediction of spatial changes in population distribution induced by Industry 4.0.
Název v anglickém jazyce
Local Extremes of Selected Industry 4.0 Indicators in the European Space—Structure for Autonomous Systems
Popis výsledku anglicky
In the past, the social and economic impacts of industrial revolutions have been clearly identified. The current Fourth Industrial Revolution (Industry 4.0) is haracterized by robotization, digitization, and automation. This will transform the production processes, but also the services or financial markets. Specific groups of people and activities may be replaced by new information technologies. Changes represent an extreme risk of economic instability and social change. The authors described available published sources and selected a group of indicators related to Industry 4.0. The indicators were divided into five groups and summarized by negative or positive impact. The indicators were analyzed by precedence analysis. Extremes in the geographical dislocation of actor values were found. Furthermore, spatial dependencies in the distribution of these extremes were found by calculating multiple (long) precedencies. European countries were classified according to individual groups of indicators. The results were compared with the real values of the indicators. The indicated extremes and their distribution will allow to predict changes in the behavior of the population given by changes in the socio-economic environment. The behavior of the population can be described by the behavior of autonomous systems on selected infrastructure. The paper presents research related to the creation of a multiagent model for the prediction of spatial changes in population distribution induced by Industry 4.0.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50803 - Information science (social aspects)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Risk and Financial Management
ISSN
1911-8066
e-ISSN
1911-8074
Svazek periodika
13
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
39
Strana od-do
1-39
Kód UT WoS článku
000511892200016
EID výsledku v databázi Scopus
—