Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Local Extremes of Selected Industry 4.0 Indicators in the European Space—Structure for Autonomous Systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F20%3AA0000642" target="_blank" >RIV/47813059:19240/20:A0000642 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/47813059:19520/20:A0000182

  • Výsledek na webu

    <a href="https://www.mdpi.com/1911-8074/13/1/13" target="_blank" >https://www.mdpi.com/1911-8074/13/1/13</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/jrfm13010013" target="_blank" >10.3390/jrfm13010013</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Local Extremes of Selected Industry 4.0 Indicators in the European Space—Structure for Autonomous Systems

  • Popis výsledku v původním jazyce

    In the past, the social and economic impacts of industrial revolutions have been clearly identified. The current Fourth Industrial Revolution (Industry 4.0) is haracterized by robotization, digitization, and automation. This will transform the production processes, but also the services or financial markets. Specific groups of people and activities may be replaced by new information technologies. Changes represent an extreme risk of economic instability and social change. The authors described available published sources and selected a group of indicators related to Industry 4.0. The indicators were divided into five groups and summarized by negative or positive impact. The indicators were analyzed by precedence analysis. Extremes in the geographical dislocation of actor values were found. Furthermore, spatial dependencies in the distribution of these extremes were found by calculating multiple (long) precedencies. European countries were classified according to individual groups of indicators. The results were compared with the real values of the indicators. The indicated extremes and their distribution will allow to predict changes in the behavior of the population given by changes in the socio-economic environment. The behavior of the population can be described by the behavior of autonomous systems on selected infrastructure. The paper presents research related to the creation of a multiagent model for the prediction of spatial changes in population distribution induced by Industry 4.0.

  • Název v anglickém jazyce

    Local Extremes of Selected Industry 4.0 Indicators in the European Space—Structure for Autonomous Systems

  • Popis výsledku anglicky

    In the past, the social and economic impacts of industrial revolutions have been clearly identified. The current Fourth Industrial Revolution (Industry 4.0) is haracterized by robotization, digitization, and automation. This will transform the production processes, but also the services or financial markets. Specific groups of people and activities may be replaced by new information technologies. Changes represent an extreme risk of economic instability and social change. The authors described available published sources and selected a group of indicators related to Industry 4.0. The indicators were divided into five groups and summarized by negative or positive impact. The indicators were analyzed by precedence analysis. Extremes in the geographical dislocation of actor values were found. Furthermore, spatial dependencies in the distribution of these extremes were found by calculating multiple (long) precedencies. European countries were classified according to individual groups of indicators. The results were compared with the real values of the indicators. The indicated extremes and their distribution will allow to predict changes in the behavior of the population given by changes in the socio-economic environment. The behavior of the population can be described by the behavior of autonomous systems on selected infrastructure. The paper presents research related to the creation of a multiagent model for the prediction of spatial changes in population distribution induced by Industry 4.0.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50803 - Information science (social aspects)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Risk and Financial Management

  • ISSN

    1911-8066

  • e-ISSN

    1911-8074

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    13

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    39

  • Strana od-do

    1-39

  • Kód UT WoS článku

    000511892200016

  • EID výsledku v databázi Scopus