Topic Extension Using the Network Extracted from DBLP
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F13%3A%230002440" target="_blank" >RIV/47813059:19520/13:#0002440 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/13:86086965
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Topic Extension Using the Network Extracted from DBLP
Popis výsledku v původním jazyce
This article focuses on the topic extension in an area that is initially specified by the user through the topic's keywords. The extended area of interest defined by keywords is determined by a set of terms used by the community for which the selected keywords are significant. The extracted topic by selected communities can be used to update and broaden the area of interest. This new evaluation of edges depends on terms that appear in the titles of articles of two co-Authors. The newly evaluated networkmore accurately describes the intensity of the relationships between co-Authors. This network is suitable as an input to models, which are focused on prediction of future relationships and community structures in co-Author networks. Moreover, the topicextension may be used in prediction models for the extraction of expected keywords which will be used in a given community.
Název v anglickém jazyce
Topic Extension Using the Network Extracted from DBLP
Popis výsledku anglicky
This article focuses on the topic extension in an area that is initially specified by the user through the topic's keywords. The extended area of interest defined by keywords is determined by a set of terms used by the community for which the selected keywords are significant. The extracted topic by selected communities can be used to update and broaden the area of interest. This new evaluation of edges depends on terms that appear in the titles of articles of two co-Authors. The newly evaluated networkmore accurately describes the intensity of the relationships between co-Authors. This network is suitable as an input to models, which are focused on prediction of future relationships and community structures in co-Author networks. Moreover, the topicextension may be used in prediction models for the extraction of expected keywords which will be used in a given community.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
25th European Modeling and Simulation Symposium, EMSS 2013
ISBN
978-88-97999-22-5
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
410-417
Název nakladatele
Elsevier
Místo vydání
Brusel
Místo konání akce
Athens, Greece
Datum konání akce
25. 9. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—