Shapley Values of Cooperative Games with I-Fuzzy Expectations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F15%3A%230003525" target="_blank" >RIV/47813059:19520/15:#0003525 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Shapley Values of Cooperative Games with I-Fuzzy Expectations
Popis výsledku v původním jazyce
In the cooperative game theory players of a game are cooperating in order to increase a mutual profit. The cooperative game theory considers the question of a profit distribution, and provides several solution concepts; one of them is the concept of a Shapley value. In reality, the expected pay-offs are not always exactly given - they can be only expected with some precision. One of the possible approaches that include an uncertainty into cooperative games is the fuzzy-sets approach. This approach expect that players knows a degree of membership of specific expected payoffs. However, the real situation should be better covered, when also the part of indecisiveness about the future pay-offs is considered, as in I-fuzzy sets, described originally as Atanassov intuitionistic fuzzy sets. The main aim of this article is to discuss the construction of the Shapley value of transferable utility cooperative games when pay-offs are vague, in this case expressed as I-fuzzy numbers, and compare pr
Název v anglickém jazyce
Shapley Values of Cooperative Games with I-Fuzzy Expectations
Popis výsledku anglicky
In the cooperative game theory players of a game are cooperating in order to increase a mutual profit. The cooperative game theory considers the question of a profit distribution, and provides several solution concepts; one of them is the concept of a Shapley value. In reality, the expected pay-offs are not always exactly given - they can be only expected with some precision. One of the possible approaches that include an uncertainty into cooperative games is the fuzzy-sets approach. This approach expect that players knows a degree of membership of specific expected payoffs. However, the real situation should be better covered, when also the part of indecisiveness about the future pay-offs is considered, as in I-fuzzy sets, described originally as Atanassov intuitionistic fuzzy sets. The main aim of this article is to discuss the construction of the Shapley value of transferable utility cooperative games when pay-offs are vague, in this case expressed as I-fuzzy numbers, and compare pr
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-02424S" target="_blank" >GA14-02424S: Metody operačního výzkumu pro podporu rozhodování v podmínkách neurčitosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
33rd International Conference Mathematical Methods in Economics MME2015: Conference Proceedings
ISBN
978-80-261-0539-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
537-542
Název nakladatele
University of West Bohemia, Plzeň
Místo vydání
Plzeň, Czech Republic
Místo konání akce
Cheb, Czech Republic
Datum konání akce
9. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—