TDABC and Estimation of Time Drivers Using Process Mining
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F21%3AA0000203" target="_blank" >RIV/47813059:19520/21:A0000203 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-981-16-2994-5_41" target="_blank" >http://dx.doi.org/10.1007/978-981-16-2994-5_41</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-16-2994-5_41" target="_blank" >10.1007/978-981-16-2994-5_41</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TDABC and Estimation of Time Drivers Using Process Mining
Popis výsledku v původním jazyce
Costing systems play a crucial role in many managerial decisions; thus, it is crucial that costing systems provide appropriate information. Time-driven activity-based costing systems (TDABC) are successors of activity-based costing systems (ABC). ABCs were created in order to address shortcomings of traditional costing systems, while TDABCs were created to address mostly implementational shortcomings of ABCs. In this research, we focus on the advantages of integration of process mining (PM) and TDABC for estimation of activity durations used as time drivers for allocation of overhead costs. Thus, we have stated two research questions: (1) Can PM be used for estimation of time drivers? and (2) What are the benefits of using PM for the estimation of time drivers? To address these questions, we present a proof of concept, where we analyze two real-world datasets representing loan application process. Firstly, we clean both datasets, and then, we use PM techniques to discover process models representing the process. We show that PM can be used for time estimation and time drivers’ determination and that there are potential benefits to this approach. Furthermore, we discuss the possibility of using actual times instead of estimates.
Název v anglickém jazyce
TDABC and Estimation of Time Drivers Using Process Mining
Popis výsledku anglicky
Costing systems play a crucial role in many managerial decisions; thus, it is crucial that costing systems provide appropriate information. Time-driven activity-based costing systems (TDABC) are successors of activity-based costing systems (ABC). ABCs were created in order to address shortcomings of traditional costing systems, while TDABCs were created to address mostly implementational shortcomings of ABCs. In this research, we focus on the advantages of integration of process mining (PM) and TDABC for estimation of activity durations used as time drivers for allocation of overhead costs. Thus, we have stated two research questions: (1) Can PM be used for estimation of time drivers? and (2) What are the benefits of using PM for the estimation of time drivers? To address these questions, we present a proof of concept, where we analyze two real-world datasets representing loan application process. Firstly, we clean both datasets, and then, we use PM techniques to discover process models representing the process. We show that PM can be used for time estimation and time drivers’ determination and that there are potential benefits to this approach. Furthermore, we discuss the possibility of using actual times instead of estimates.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Smart Innovation, Systems and Technologies
ISBN
—
ISSN
2190-3018
e-ISSN
—
Počet stran výsledku
11
Strana od-do
489-499
Název nakladatele
Springer
Místo vydání
Singapore
Místo konání akce
online
Datum konání akce
14. 6. 2021
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—