A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F21%3AA0000242" target="_blank" >RIV/47813059:19520/21:A0000242 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9408608" target="_blank" >https://ieeexplore.ieee.org/document/9408608</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3074274" target="_blank" >10.1109/ACCESS.2021.3074274</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons
Popis výsledku v původním jazyce
The aim of this paper is to compare selected iterative algorithms for inconsistency reduction in pairwise comparisons by Monte Carlo simulations. We perform simulations for pairwise comparison matrices of the order n = 4 and n = 8 with the initial inconsistency 0.10 <; CR <; 0.80 and entries drawn from Saaty's fundamental scale. Subsequently, we evaluate the algorithms' performance with respect to four measures that express the degree of original preference preservation. Our results indicate that no algorithm outperforms all other algorithms with respect to every measure of preference preservation. The Xu and Wei's algorithm is the best with regard to the preservation of an original priority vector and the ranking of objects, the Step-by-Step algorithm best preserves the original preferences expressed in the form of a pairwise comparison matrix, and the algorithm of Szybowski keeps the most matrix entries unchanged during inconsistency reduction.
Název v anglickém jazyce
A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons
Popis výsledku anglicky
The aim of this paper is to compare selected iterative algorithms for inconsistency reduction in pairwise comparisons by Monte Carlo simulations. We perform simulations for pairwise comparison matrices of the order n = 4 and n = 8 with the initial inconsistency 0.10 <; CR <; 0.80 and entries drawn from Saaty's fundamental scale. Subsequently, we evaluate the algorithms' performance with respect to four measures that express the degree of original preference preservation. Our results indicate that no algorithm outperforms all other algorithms with respect to every measure of preference preservation. The Xu and Wei's algorithm is the best with regard to the preservation of an original priority vector and the ranking of objects, the Step-by-Step algorithm best preserves the original preferences expressed in the form of a pairwise comparison matrix, and the algorithm of Szybowski keeps the most matrix entries unchanged during inconsistency reduction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
není
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
62553-62561
Kód UT WoS článku
000645843700001
EID výsledku v databázi Scopus
—