Pair Programming with ChatGPT for Sampling and Estimation of Copulas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19520%2F23%3AA0000366" target="_blank" >RIV/47813059:19520/23:A0000366 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00180-023-01437-2" target="_blank" >https://link.springer.com/article/10.1007/s00180-023-01437-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00180-023-01437-2" target="_blank" >10.1007/s00180-023-01437-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pair Programming with ChatGPT for Sampling and Estimation of Copulas
Popis výsledku v původním jazyce
Without writing a single line of code by a human, an example Monte Carlo simulation-based application for stochastic dependence modeling with copulas is developed through pair programming involving a human partner and a large language model (LLM) fine-tuned for conversations. This process encompasses interacting with ChatGPT using both natural language and mathematical formalism. Under the careful supervision of a human expert, this interaction facilitated the creation of functioning code in MATLAB, Python, and R. The code performs a variety of tasks including sampling from a given copula model, evaluating the model’s density, conducting maximum likelihood estimation, optimizing for parallel computing on CPUs and GPUs, and visualizing the computed results. In contrast to other emerging studies that assess the accuracy of LLMs like ChatGPT on tasks from a selected area, this work rather investigates ways how to achieve a successful solution of a standard statistical task in a collaboration of a human expert and artificial intelligence (AI). Particularly, through careful prompt engineering, we separate successful solutions generated by ChatGPT from unsuccessful ones, resulting in a comprehensive list of related pros and cons. It is demonstrated that if the typical pitfalls are avoided, we can substantially benefit from collaborating with an AI partner. For example, we show that if ChatGPT is not able to provide a correct solution due to a lack of or incorrect knowledge, the human-expert can feed it with the correct knowledge, e.g., in the form of mathematical theorems and formulas, and make it to apply the gained knowledge in order to provide a correct solution. Such ability presents an attractive opportunity to achieve a programmed solution even for users with rather limited knowledge of programming techniques.
Název v anglickém jazyce
Pair Programming with ChatGPT for Sampling and Estimation of Copulas
Popis výsledku anglicky
Without writing a single line of code by a human, an example Monte Carlo simulation-based application for stochastic dependence modeling with copulas is developed through pair programming involving a human partner and a large language model (LLM) fine-tuned for conversations. This process encompasses interacting with ChatGPT using both natural language and mathematical formalism. Under the careful supervision of a human expert, this interaction facilitated the creation of functioning code in MATLAB, Python, and R. The code performs a variety of tasks including sampling from a given copula model, evaluating the model’s density, conducting maximum likelihood estimation, optimizing for parallel computing on CPUs and GPUs, and visualizing the computed results. In contrast to other emerging studies that assess the accuracy of LLMs like ChatGPT on tasks from a selected area, this work rather investigates ways how to achieve a successful solution of a standard statistical task in a collaboration of a human expert and artificial intelligence (AI). Particularly, through careful prompt engineering, we separate successful solutions generated by ChatGPT from unsuccessful ones, resulting in a comprehensive list of related pros and cons. It is demonstrated that if the typical pitfalls are avoided, we can substantially benefit from collaborating with an AI partner. For example, we show that if ChatGPT is not able to provide a correct solution due to a lack of or incorrect knowledge, the human-expert can feed it with the correct knowledge, e.g., in the form of mathematical theorems and formulas, and make it to apply the gained knowledge in order to provide a correct solution. Such ability presents an attractive opportunity to achieve a programmed solution even for users with rather limited knowledge of programming techniques.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-03085S" target="_blank" >GA21-03085S: Párové porovnání a data mining při podpoře rozhodovacích procesů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Statistics
ISSN
0943-4062
e-ISSN
1613-9658
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
31
Strana od-do
1-31
Kód UT WoS článku
001110962300001
EID výsledku v databázi Scopus
—