Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Normální tvary ireducibilních reprezentací nulové křivosti s hodnotami v algebře $sl_3$

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F05%3A%230000041" target="_blank" >RIV/47813059:19610/05:#0000041 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Normal forms of irreducible ${germ{sl}}sb 3$-valued zero curvature representations

  • Popis výsledku v původním jazyce

    One of the ways to overcome existing limitations of the famous Wahlquist-Estabrook procedure consists in employing normal forms of zero curvature representations (ZCR). While in case of $sl_{2}$ normal forms are known for a long time, the next step is made in this paper. We find normal forms of $sl_{3}$-valued ZCR that are not reducible to a proper subalgebra of $sl_{3}$. We also prove a reducibility theorem, which says that if one of the matrices in a ZCR (A, B) falls into a proper subalgebra of $sl_{3}$, then the second matrix either falls into the same subalgebra or the ZCR is in a sense trivial. In the end of this paper we show examples of ZCR and their normal forms.

  • Název v anglickém jazyce

    Normal forms of irreducible ${germ{sl}}sb 3$-valued zero curvature representations

  • Popis výsledku anglicky

    One of the ways to overcome existing limitations of the famous Wahlquist-Estabrook procedure consists in employing normal forms of zero curvature representations (ZCR). While in case of $sl_{2}$ normal forms are known for a long time, the next step is made in this paper. We find normal forms of $sl_{3}$-valued ZCR that are not reducible to a proper subalgebra of $sl_{3}$. We also prove a reducibility theorem, which says that if one of the matrices in a ZCR (A, B) falls into a proper subalgebra of $sl_{3}$, then the second matrix either falls into the same subalgebra or the ZCR is in a sense trivial. In the end of this paper we show examples of ZCR and their normal forms.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F04%2F0538" target="_blank" >GA201/04/0538: Geometrie integrabilních systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2005

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Reports on Mathematical Physics

  • ISSN

    ISSN0034-4877

  • e-ISSN

  • Svazek periodika

    55

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    11

  • Strana od-do

    435-445

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus