Nonlinearly determined wavefronts of the Nicholson's diffusive equation: when small delays are not harmless
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19610%2F20%3AA0000073" target="_blank" >RIV/47813059:19610/20:A0000073 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022039619305352?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039619305352?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2019.11.007" target="_blank" >10.1016/j.jde.2019.11.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonlinearly determined wavefronts of the Nicholson's diffusive equation: when small delays are not harmless
Popis výsledku v původním jazyce
By proving the existence of non-monotone and non-oscillating wavefronts for the Nicholson's blowflies diffusive equation (the NDE), we answer an open question from [16]. Surprisingly, wavefronts of such a kind can be observed even for arbitrarily small delays. Similarly to the pushed fronts, obtained waves are not linearly determined. In contrast, a broader family of eventually monotone wavefronts for the NDE is indeed determined by properties of the spectra of the linearized equations. Our proofs use essentially several specific characteristics of the blowflies birth function (its unimodal form and the negativity of its Schwarz derivative, among others). One of the key auxiliary results of the paper shows that the Mallet-Paret-Cao-Arino theory of super-exponential solutions for scalar equations can be extended for some classes of second order delay differential equations. For the new type of non-monotone waves to the NDE, our numerical simulations also confirm their stability properties established by Mei et al.
Název v anglickém jazyce
Nonlinearly determined wavefronts of the Nicholson's diffusive equation: when small delays are not harmless
Popis výsledku anglicky
By proving the existence of non-monotone and non-oscillating wavefronts for the Nicholson's blowflies diffusive equation (the NDE), we answer an open question from [16]. Surprisingly, wavefronts of such a kind can be observed even for arbitrarily small delays. Similarly to the pushed fronts, obtained waves are not linearly determined. In contrast, a broader family of eventually monotone wavefronts for the NDE is indeed determined by properties of the spectra of the linearized equations. Our proofs use essentially several specific characteristics of the blowflies birth function (its unimodal form and the negativity of its Schwarz derivative, among others). One of the key auxiliary results of the paper shows that the Mallet-Paret-Cao-Arino theory of super-exponential solutions for scalar equations can be extended for some classes of second order delay differential equations. For the new type of non-monotone waves to the NDE, our numerical simulations also confirm their stability properties established by Mei et al.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0008521" target="_blank" >EF16_027/0008521: Podpora mezinárodní mobility výzkumných pracovníků na SU</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Svazek periodika
268
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
5156-5178
Kód UT WoS článku
000514573100009
EID výsledku v databázi Scopus
2-s2.0-85075392214