Quasinormal modes, stability and shadows of a black hole in the 4D Einstein-Gauss-Bonnet gravity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F20%3AA0000008" target="_blank" >RIV/47813059:19630/20:A0000008 - isvavai.cz</a>
Výsledek na webu
<a href="https://epjc.epj.org/articles/epjc/abs/2020/11/10052_2020_Article_8639/10052_2020_Article_8639.html" target="_blank" >https://epjc.epj.org/articles/epjc/abs/2020/11/10052_2020_Article_8639/10052_2020_Article_8639.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1140/epjc/s10052-020-08639-8" target="_blank" >10.1140/epjc/s10052-020-08639-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quasinormal modes, stability and shadows of a black hole in the 4D Einstein-Gauss-Bonnet gravity
Popis výsledku v původním jazyce
Recently a D-dimensional regularization approach leading to the non-trivial (3 + 1)-dimensional Einstein-Gauss-Bonnet (EGB) effective description of gravity was formulated which was claimed to bypass the Lovelock's theorem and avoid Ostrogradsky instability. Later it was shown that the regularization is possible only for some broad, but limited, class of metrics and Aoki et al. (arXiv:2005.03859) formulated a well-defined four-dimensional EGB theory, which breaks the Lorentz invariance in a theoretically consistent and observationally viable way. The black-hole solution of the first naive approach proved out to be also the exact solution of the well-defined theory. Here we calculate quasi-normal modes of scalar, electromagnetic and gravitational perturbations and find the radius of shadow for spherically symmetric and asymptotically flat black holes with Gauss-Bonnet corrections. We show that the black hole is gravitationally stable when (-16M(2) < alpha less than or similar to 0.6M(2)). The instability in the outer range is the eikonal one and it develops at high multipole numbers. The radius of the shadow R-Sh obeys the linear law with a remarkable accuracy.
Název v anglickém jazyce
Quasinormal modes, stability and shadows of a black hole in the 4D Einstein-Gauss-Bonnet gravity
Popis výsledku anglicky
Recently a D-dimensional regularization approach leading to the non-trivial (3 + 1)-dimensional Einstein-Gauss-Bonnet (EGB) effective description of gravity was formulated which was claimed to bypass the Lovelock's theorem and avoid Ostrogradsky instability. Later it was shown that the regularization is possible only for some broad, but limited, class of metrics and Aoki et al. (arXiv:2005.03859) formulated a well-defined four-dimensional EGB theory, which breaks the Lorentz invariance in a theoretically consistent and observationally viable way. The black-hole solution of the first naive approach proved out to be also the exact solution of the well-defined theory. Here we calculate quasi-normal modes of scalar, electromagnetic and gravitational perturbations and find the radius of shadow for spherically symmetric and asymptotically flat black holes with Gauss-Bonnet corrections. We show that the black hole is gravitationally stable when (-16M(2) < alpha less than or similar to 0.6M(2)). The instability in the outer range is the eikonal one and it develops at high multipole numbers. The radius of the shadow R-Sh obeys the linear law with a remarkable accuracy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10303 - Particles and field physics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-03950S" target="_blank" >GA19-03950S: Testování silné gravitace prostřednictvím černých děr</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Physical Journal C
ISSN
1434-6044
e-ISSN
1434-6052
Svazek periodika
80
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
„1049-1“-„1049-13“
Kód UT WoS článku
000593720200003
EID výsledku v databázi Scopus
2-s2.0-85095955055