Where is Love? Tidal deformability in the black hole compactness limit
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F20%3AA0000064" target="_blank" >RIV/47813059:19630/20:A0000064 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1361-6382/abb07a" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6382/abb07a</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6382/abb07a" target="_blank" >10.1088/1361-6382/abb07a</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Where is Love? Tidal deformability in the black hole compactness limit
Popis výsledku v původním jazyce
One of the macroscopically measurable effects of gravity is the tidal deformability of astrophysical objects, which can be quantified by their tidal Love numbers. For planets and stars, these numbers measure the resistance of their material against the tidal forces, and the resulting contribution to their gravitational multipole moments. According to general relativity, nonrotating deformed black holes, instead, show no addition to their gravitational multipole moments, and all of their Love numbers are zero. In this paper we explore different configurations of nonrotating compact and ultracompact stars to bridge the compactness gap between black holes and neutron stars and calculate their Love number k(2). We calculate k(2) for the first time for uniform density ultracompact stars with mass M and radius R beyond the Buchdahl limit (compactness M/R > 4/9), and we find that k(2) -> 0(+) as M/R -> 1/2, i.e., the Schwarzschild black hole limit. Our results provide insight on the zero tidal deformability limit and we use current constraints on the binary tidal deformability (Lambda) over tilde from GW170817 (and future upper limits from binary black hole mergers) to propose tests of alternative models.
Název v anglickém jazyce
Where is Love? Tidal deformability in the black hole compactness limit
Popis výsledku anglicky
One of the macroscopically measurable effects of gravity is the tidal deformability of astrophysical objects, which can be quantified by their tidal Love numbers. For planets and stars, these numbers measure the resistance of their material against the tidal forces, and the resulting contribution to their gravitational multipole moments. According to general relativity, nonrotating deformed black holes, instead, show no addition to their gravitational multipole moments, and all of their Love numbers are zero. In this paper we explore different configurations of nonrotating compact and ultracompact stars to bridge the compactness gap between black holes and neutron stars and calculate their Love number k(2). We calculate k(2) for the first time for uniform density ultracompact stars with mass M and radius R beyond the Buchdahl limit (compactness M/R > 4/9), and we find that k(2) -> 0(+) as M/R -> 1/2, i.e., the Schwarzschild black hole limit. Our results provide insight on the zero tidal deformability limit and we use current constraints on the binary tidal deformability (Lambda) over tilde from GW170817 (and future upper limits from binary black hole mergers) to propose tests of alternative models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Classical and Quantum Gravity
ISSN
0264-9381
e-ISSN
1361-6382
Svazek periodika
37
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
„195017-1“-„195017-15“
Kód UT WoS článku
000570861000001
EID výsledku v databázi Scopus
2-s2.0-85091948522