Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Zernike moment based classification of cosmic ray candidate hits from cmos sensors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F21%3AA0000153" target="_blank" >RIV/47813059:19630/21:A0000153 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/1424-8220/21/22/7718" target="_blank" >https://www.mdpi.com/1424-8220/21/22/7718</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s21227718" target="_blank" >10.3390/s21227718</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Zernike moment based classification of cosmic ray candidate hits from cmos sensors

  • Popis výsledku v původním jazyce

    Reliable tools for artefact rejection and signal classification are a must for cosmic ray detection experiments based on CMOS technology. In this paper, we analyse the fitness of several feature-based statistical classifiers for the classification of particle candidate hits in four categories: spots, tracks, worms and artefacts. We use Zernike moments of the image function as feature carriers and propose a preprocessing and denoising scheme to make the feature extraction more efficient. As opposed to convolution neural network classifiers, the feature-based classifiers allow for establishing a connection between features and geometrical properties of candidate hits. Apart from basic classifiers we also consider their ensemble extensions and find these extensions generally better performing than basic versions, with an average recognition accuracy of 88%.

  • Název v anglickém jazyce

    Zernike moment based classification of cosmic ray candidate hits from cmos sensors

  • Popis výsledku anglicky

    Reliable tools for artefact rejection and signal classification are a must for cosmic ray detection experiments based on CMOS technology. In this paper, we analyse the fitness of several feature-based statistical classifiers for the classification of particle candidate hits in four categories: spots, tracks, worms and artefacts. We use Zernike moments of the image function as feature carriers and propose a preprocessing and denoising scheme to make the feature extraction more efficient. As opposed to convolution neural network classifiers, the feature-based classifiers allow for establishing a connection between features and geometrical properties of candidate hits. Apart from basic classifiers we also consider their ensemble extensions and find these extensions generally better performing than basic versions, with an average recognition accuracy of 88%.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Sensors

  • ISSN

    1424-3210

  • e-ISSN

    1424-8220

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    22

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    18

  • Strana od-do

    „7718-1“-„7718-18“

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85119323610