Kinetic formulation of Tolman-Ehrenfest effect: Non-ideal fluids in Schwarzschild and Kerr space-times
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19630%2F22%3AA0000210" target="_blank" >RIV/47813059:19630/22:A0000210 - isvavai.cz</a>
Výsledek na webu
<a href="https://aip.scitation.org/doi/10.1063/5.0111200" target="_blank" >https://aip.scitation.org/doi/10.1063/5.0111200</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0111200" target="_blank" >10.1063/5.0111200</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Kinetic formulation of Tolman-Ehrenfest effect: Non-ideal fluids in Schwarzschild and Kerr space-times
Popis výsledku v původním jazyce
A review of the original thermodynamic formulation of the Tolman-Ehrenfest effect prescribing the temperature profile of uncharged fluid at thermal equilibrium forming stationary configurations in curved space-time is proposed. A statistical description based on the relativistic kinetic theory is implemented. In this context, the Tolman-Ehrenfest relation arises in the Schwarzschild space-time for collisionless uncharged particles at Maxwellian kinetic equilibrium. However, the result changes considerably when non-ideal fluids, i.e., non-Maxwellian distributions, are treated, whose statistical temperature becomes non-isotropic and gives rise to a tensor pressure. This is associated with phase-space anisotropies in the distribution function, occurring both for diagonal and non-diagonal metric tensors, exemplified by the Schwarzschild and Kerr metrics, respectively. As a consequence, it is shown that for these systems, it is not possible to define a Tolman-Ehrenfest relation in terms of an isotropic scalar temperature. Qualitative properties of the novel solution are discussed.
Název v anglickém jazyce
Kinetic formulation of Tolman-Ehrenfest effect: Non-ideal fluids in Schwarzschild and Kerr space-times
Popis výsledku anglicky
A review of the original thermodynamic formulation of the Tolman-Ehrenfest effect prescribing the temperature profile of uncharged fluid at thermal equilibrium forming stationary configurations in curved space-time is proposed. A statistical description based on the relativistic kinetic theory is implemented. In this context, the Tolman-Ehrenfest relation arises in the Schwarzschild space-time for collisionless uncharged particles at Maxwellian kinetic equilibrium. However, the result changes considerably when non-ideal fluids, i.e., non-Maxwellian distributions, are treated, whose statistical temperature becomes non-isotropic and gives rise to a tensor pressure. This is associated with phase-space anisotropies in the distribution function, occurring both for diagonal and non-diagonal metric tensors, exemplified by the Schwarzschild and Kerr metrics, respectively. As a consequence, it is shown that for these systems, it is not possible to define a Tolman-Ehrenfest relation in terms of an isotropic scalar temperature. Qualitative properties of the novel solution are discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICS OF FLUIDS
ISSN
1070-6631
e-ISSN
—
Svazek periodika
34
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
„091701-1“-„091701-6“
Kód UT WoS článku
000859320400003
EID výsledku v databázi Scopus
2-s2.0-85137653354