Experimental and Numerical Evaluation of Losses From Turbine Hub Clearance Flow
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23210%2F19%3A43959632" target="_blank" >RIV/49777513:23210/19:43959632 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/49193864:_____/19:N0000008
Výsledek na webu
<a href="https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2019/58561/V02BT40A014/1066484" target="_blank" >https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2019/58561/V02BT40A014/1066484</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/GT2019-90726" target="_blank" >10.1115/GT2019-90726</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimental and Numerical Evaluation of Losses From Turbine Hub Clearance Flow
Popis výsledku v původním jazyce
Long-term efforts have been made to understand loss generation and its reduction in the field of axial turbomachines. The traditional approach to losses for an isolated blade row considers the profile and the secondary losses as a result of viscous flow. The additional kinds of losses in the stage are connected with the shear stress in the mixing process. These losses result from the mixing of the main stream flow with 1) the stator leakage injected through the root axial gap and 2) the return of the tip leakage over the bucket shroud. This article focuses on the first type of mixing losses. The leakage to the main stream flow ratio and the root reaction are the two key parameters investigated in this study. The primary data source for this study is the experiment. An experimental single stage air turbine was modified to set and precisely measure the stator leakage flow. Three configurations of the single-stage test rig with different reaction levels were tested. The second data source for this study is CFD computation. These computations are applied to different geometries and conditions from the experiment; they are derived from real steam turbine stages designed in DSPW. The computations simulate multistage configuration and real steam is considered as the working fluid. CFD computations were performed in the commercial software ANSYS CFX. Each configuration task was computed in three iterative steps. Each step takes the distribution of the flow parameters on the boundary domains from the previous iteration. The final results from this ‘repeating boundary conditions’ approach better correspond with the real expansion in a multistage configuration. The two data sources are not directly comparable. The experiment is used for validation of the trends. The computations provide the possibility of a multi-parametric study. The multi-parametric study is necessary to obtain a more general loss model which can be used during turbine design. The evaluation of the experimental and numerical parts focuses on a comparison of the overall stage performance. Stage efficiency and reaction are presented in relation to the ratio between leakage and main stream flow.
Název v anglickém jazyce
Experimental and Numerical Evaluation of Losses From Turbine Hub Clearance Flow
Popis výsledku anglicky
Long-term efforts have been made to understand loss generation and its reduction in the field of axial turbomachines. The traditional approach to losses for an isolated blade row considers the profile and the secondary losses as a result of viscous flow. The additional kinds of losses in the stage are connected with the shear stress in the mixing process. These losses result from the mixing of the main stream flow with 1) the stator leakage injected through the root axial gap and 2) the return of the tip leakage over the bucket shroud. This article focuses on the first type of mixing losses. The leakage to the main stream flow ratio and the root reaction are the two key parameters investigated in this study. The primary data source for this study is the experiment. An experimental single stage air turbine was modified to set and precisely measure the stator leakage flow. Three configurations of the single-stage test rig with different reaction levels were tested. The second data source for this study is CFD computation. These computations are applied to different geometries and conditions from the experiment; they are derived from real steam turbine stages designed in DSPW. The computations simulate multistage configuration and real steam is considered as the working fluid. CFD computations were performed in the commercial software ANSYS CFX. Each configuration task was computed in three iterative steps. Each step takes the distribution of the flow parameters on the boundary domains from the previous iteration. The final results from this ‘repeating boundary conditions’ approach better correspond with the real expansion in a multistage configuration. The two data sources are not directly comparable. The experiment is used for validation of the trends. The computations provide the possibility of a multi-parametric study. The multi-parametric study is necessary to obtain a more general loss model which can be used during turbine design. The evaluation of the experimental and numerical parts focuses on a comparison of the overall stage performance. Stage efficiency and reaction are presented in relation to the ratio between leakage and main stream flow.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1603" target="_blank" >LQ1603: Výzkum pro SUSEN</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Turbo Expo: Power for Land, Sea, and Air
ISBN
978-0-7918-5856-1
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
1-9
Název nakladatele
American Society of Mechanical Engineers (ASME)
Místo vydání
New York
Místo konání akce
Phoenix, Arizona (USA)
Datum konání akce
17. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000501628000014