Turbulent jet stability increased by ribs inside the nozzle – Stereo PIV measurement one diameter past the nozzle
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23210%2F21%3A43962849" target="_blank" >RIV/49777513:23210/21:43962849 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.matec-conferences.org/articles/matecconf/pdf/2021/14/matecconf_pse2021_00006.pdf" target="_blank" >https://www.matec-conferences.org/articles/matecconf/pdf/2021/14/matecconf_pse2021_00006.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/matecconf/202134500006" target="_blank" >10.1051/matecconf/202134500006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Turbulent jet stability increased by ribs inside the nozzle – Stereo PIV measurement one diameter past the nozzle
Popis výsledku v původním jazyce
We observe that decreasing the inner nozzle surface by adding longitudinal ribs increases the jet stability in terms of the amount of turbulent kinetic energy in the near shear layer. We try to explain our observation as a stabilization effect of secondary flow vortices emerging in the corners of the ribs. These stream-wise vortices damage the development of larger-scale structures in the near shear layer. This explanation is supported by autocorrelation function of the stream-wise velocity component, which displays slightly smaller integral length-scale in the case with ribs than in the case of smooth nozzle. The experiment is performed at Reynolds number 2.2 × 105 (based on the nozzle diameter 50 mm); the Stereo-PIV (Particle Image Velocimetry) measurement takes place at the plane perpendicular to the jet axis one diameter past the nozzle exit. Optical 3D scanner controls the real nozzle geometry. This article presents preliminary measurement at single position and single velocity only; further exploration of this problem is needed.
Název v anglickém jazyce
Turbulent jet stability increased by ribs inside the nozzle – Stereo PIV measurement one diameter past the nozzle
Popis výsledku anglicky
We observe that decreasing the inner nozzle surface by adding longitudinal ribs increases the jet stability in terms of the amount of turbulent kinetic energy in the near shear layer. We try to explain our observation as a stabilization effect of secondary flow vortices emerging in the corners of the ribs. These stream-wise vortices damage the development of larger-scale structures in the near shear layer. This explanation is supported by autocorrelation function of the stream-wise velocity component, which displays slightly smaller integral length-scale in the case with ribs than in the case of smooth nozzle. The experiment is performed at Reynolds number 2.2 × 105 (based on the nozzle diameter 50 mm); the Stereo-PIV (Particle Image Velocimetry) measurement takes place at the plane perpendicular to the jet axis one diameter past the nozzle exit. Optical 3D scanner controls the real nozzle geometry. This article presents preliminary measurement at single position and single velocity only; further exploration of this problem is needed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008389" target="_blank" >EF16_026/0008389: Výzkumná spolupráce pro dosažení vyšší účinnosti a spolehlivosti lopatkových strojů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
20th Conference on Power System Engineering
ISBN
—
ISSN
2261-236X
e-ISSN
2261-236X
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
EDP Sciences
Místo vydání
Pilsen
Místo konání akce
Pilsen
Datum konání akce
7. 9. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000748890700006