Evaluation of recycled and reused metal powders for DMLS 3D printing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23210%2F24%3A43973696" target="_blank" >RIV/49777513:23210/24:43973696 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1996-1944/17/24/6184" target="_blank" >https://www.mdpi.com/1996-1944/17/24/6184</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma17246184" target="_blank" >10.3390/ma17246184</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of recycled and reused metal powders for DMLS 3D printing
Popis výsledku v původním jazyce
Metal powders for additive manufacturing are expensive and producing new ones from mined metals has a negative ecological impact. In this work, recycled and reused metal powders from MS1 steel for Direct Metal Laser Sintering (DMLS) 3D printing were evaluated in the laboratory. The powders were recycled by melting followed by gas atomizing. Virgin, recycled and reused metal powders were evaluated using Scanning-Electron Microscopy (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS), X-Ray Diffraction (XRD), metallography analysis, microhardness measurements, Particle Size Distribution (PSD), shape factor by Digital Image Processing (DIP) and flowability testing. The results showed that the particle distribution was modified after recycling. Kurtosis analysis revealed a reduction from -0,64 for virgin powder to -1,29 for recycled powders. A positive skewness was obtained a consequently, smaller particles were found in recycled powder. The shape factor was also modified and changed from 1,57 for virgin powders to 1,28 for recycled powders. The microstructure also changed and austenite was found in recycled powders. The microhardness of recycled powder decreased by 39% compared to the virgin powder. Recycled powders did not flow using two different funnels to evaluate their flowability. The flowability of used powder was reduced from 4,3 s to 2,9 s.
Název v anglickém jazyce
Evaluation of recycled and reused metal powders for DMLS 3D printing
Popis výsledku anglicky
Metal powders for additive manufacturing are expensive and producing new ones from mined metals has a negative ecological impact. In this work, recycled and reused metal powders from MS1 steel for Direct Metal Laser Sintering (DMLS) 3D printing were evaluated in the laboratory. The powders were recycled by melting followed by gas atomizing. Virgin, recycled and reused metal powders were evaluated using Scanning-Electron Microscopy (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS), X-Ray Diffraction (XRD), metallography analysis, microhardness measurements, Particle Size Distribution (PSD), shape factor by Digital Image Processing (DIP) and flowability testing. The results showed that the particle distribution was modified after recycling. Kurtosis analysis revealed a reduction from -0,64 for virgin powder to -1,29 for recycled powders. A positive skewness was obtained a consequently, smaller particles were found in recycled powder. The shape factor was also modified and changed from 1,57 for virgin powders to 1,28 for recycled powders. The microstructure also changed and austenite was found in recycled powders. The microhardness of recycled powder decreased by 39% compared to the virgin powder. Recycled powders did not flow using two different funnels to evaluate their flowability. The flowability of used powder was reduced from 4,3 s to 2,9 s.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials
ISSN
1996-1944
e-ISSN
1996-1944
Svazek periodika
17
Číslo periodika v rámci svazku
24
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
001384610700001
EID výsledku v databázi Scopus
2-s2.0-85213289406