Adaptive hp-DG Method for Nonstationary Compressible Euler Equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F12%3A43916212" target="_blank" >RIV/49777513:23220/12:43916212 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive hp-DG Method for Nonstationary Compressible Euler Equations
Popis výsledku v původním jazyce
The compressible Euler equations describe the motion of compressible inviscid fluids. They are used in many areas ranging from aerospace, automotive, and nuclear engineering to chemistry, ecology, climatology, and others. These equations are solved mostfrequently by means of Finite Volume Methods (FVM) and low-order Finite Element Methods (FEM). However, both these approaches are lacking higher order accuracy and moreover, it is well known that conforming FEM is not the optimal tool for the discretization of first-order equations. The most promising approach to the approximate solution of the compressible Euler equations is the hp-adaptive discontinuous Galerkin method that combines the stability of FVM, with excellent approximation properties of higher-order FEM.
Název v anglickém jazyce
Adaptive hp-DG Method for Nonstationary Compressible Euler Equations
Popis výsledku anglicky
The compressible Euler equations describe the motion of compressible inviscid fluids. They are used in many areas ranging from aerospace, automotive, and nuclear engineering to chemistry, ecology, climatology, and others. These equations are solved mostfrequently by means of Finite Volume Methods (FVM) and low-order Finite Element Methods (FEM). However, both these approaches are lacking higher order accuracy and moreover, it is well known that conforming FEM is not the optimal tool for the discretization of first-order equations. The most promising approach to the approximate solution of the compressible Euler equations is the hp-adaptive discontinuous Galerkin method that combines the stability of FVM, with excellent approximation properties of higher-order FEM.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů