A comparison of sparse Bayesian regularization methods on computed tomography reconstruction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F18%3A43951832" target="_blank" >RIV/49777513:23220/18:43951832 - isvavai.cz</a>
Výsledek na webu
<a href="http://iopscience.iop.org/article/10.1088/1742-6596/1047/1/012013/meta" target="_blank" >http://iopscience.iop.org/article/10.1088/1742-6596/1047/1/012013/meta</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/1047/1/012013" target="_blank" >10.1088/1742-6596/1047/1/012013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparison of sparse Bayesian regularization methods on computed tomography reconstruction
Popis výsledku v původním jazyce
Design of regularization term is an important part of solution of an ill-posed linear inverse problem. Another important issue is selection of tuning parameters of the regularization term. We address this problem using Bayesian approach which treats tuning parameters as unknowns and estimates them from the data. Specifically, we study a regularization model known as Automatic Relevance Determination (ARD) and several methods of its solution. The first approach is the conventional Variational Bayes method using the symmetrical factorization of the posterior of the vector of unknowns and the vector of tuning parameters. The second approach is based on the idea of marginalization over the vector of unknowns or the vector of tuning parameters, while the complementary vector is estimated using maximum likelihood. The resulting algorithm is thus an optimization task with non-convex objective function, which is solved using standard gradient methods. The proposed algorithms are tested on real tomographic X-ray data and the comparison with conventional regularization techniques (Tikhonov and Lasso) is performed. The algorithm using marginalization over the tuning parameter is found to be closest to the ground truth with acceptable computational cost. MATLAB®implementation of the reconstruction algorithms is freely available for download.
Název v anglickém jazyce
A comparison of sparse Bayesian regularization methods on computed tomography reconstruction
Popis výsledku anglicky
Design of regularization term is an important part of solution of an ill-posed linear inverse problem. Another important issue is selection of tuning parameters of the regularization term. We address this problem using Bayesian approach which treats tuning parameters as unknowns and estimates them from the data. Specifically, we study a regularization model known as Automatic Relevance Determination (ARD) and several methods of its solution. The first approach is the conventional Variational Bayes method using the symmetrical factorization of the posterior of the vector of unknowns and the vector of tuning parameters. The second approach is based on the idea of marginalization over the vector of unknowns or the vector of tuning parameters, while the complementary vector is estimated using maximum likelihood. The resulting algorithm is thus an optimization task with non-convex objective function, which is solved using standard gradient methods. The proposed algorithms are tested on real tomographic X-ray data and the comparison with conventional regularization techniques (Tikhonov and Lasso) is performed. The algorithm using marginalization over the tuning parameter is found to be closest to the ground truth with acceptable computational cost. MATLAB®implementation of the reconstruction algorithms is freely available for download.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1607" target="_blank" >LO1607: RICE – Nové technologie a koncepce pro inteligentní průmyslové systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Journal of Physics: Conference Series; 1047
ISBN
—
ISSN
1742-6588
e-ISSN
1742-6596
Počet stran výsledku
17
Strana od-do
1-17
Název nakladatele
IOP Publishing Ltd.
Místo vydání
Bristol
Místo konání akce
Waterloo, Canada
Datum konání akce
23. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—