Hybrid realization of fillet weld
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F18%3A43953632" target="_blank" >RIV/49777513:23220/18:43953632 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.emeraldinsight.com/doi/full/10.1108/COMPEL-08-2017-0357#" target="_blank" >https://www.emeraldinsight.com/doi/full/10.1108/COMPEL-08-2017-0357#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1108/COMPEL-08-2017-0357" target="_blank" >10.1108/COMPEL-08-2017-0357</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid realization of fillet weld
Popis výsledku v původním jazyce
Purpose: A model of hybrid fillet welding is built and solved. No additional material (welding rod, etc.) is used. Heating of the welded parts is realized by laser beam with induction preheating and/or postheating. The purpose of these operations is to reduce the temperature gradient in welded parts in the course of both heating and cooling, which reduces the resultant hardness of the weld and its neighborhood and also reduces undesirable internal mechanical strains and stresses in material. Design/methodology/approach: The complete mathematical model of the combined welding process is presented, taking into account all relevant nonlinearities. The model is then solved numerically by the finite element method. The methodology is illustrated with an example, the results of which are compared with experiment. Findings: The proposed model provided satisfactory results even when some subtle phenomena were not taken into account (flow of melt in the pool after irradiation of the laser beam driven by the buoyancy and gravitational forces and evaporation of molten metal and influence of plasma cloud above the irradiated spot). Research limitations/implications: Accuracy of the results depends on the accuracy of physical parameters of materials entering the model and their temperature dependencies. These quantities are functions of chemical composition of the materials used, and may more or less differ from the values delivered by manufacturers. Also, the above subtle physical phenomena exhibit stochastic character and their modeling may be accompanied by non-negligible uncertainties. Practical implications: The presented model and methodology of its solution may represent a basis for design of welding processes in various branches of industry. Originality/value: The model of a complex multiphysics problem (induction-assisted laser welding) provides reasonable results confirmed by experiments.
Název v anglickém jazyce
Hybrid realization of fillet weld
Popis výsledku anglicky
Purpose: A model of hybrid fillet welding is built and solved. No additional material (welding rod, etc.) is used. Heating of the welded parts is realized by laser beam with induction preheating and/or postheating. The purpose of these operations is to reduce the temperature gradient in welded parts in the course of both heating and cooling, which reduces the resultant hardness of the weld and its neighborhood and also reduces undesirable internal mechanical strains and stresses in material. Design/methodology/approach: The complete mathematical model of the combined welding process is presented, taking into account all relevant nonlinearities. The model is then solved numerically by the finite element method. The methodology is illustrated with an example, the results of which are compared with experiment. Findings: The proposed model provided satisfactory results even when some subtle phenomena were not taken into account (flow of melt in the pool after irradiation of the laser beam driven by the buoyancy and gravitational forces and evaporation of molten metal and influence of plasma cloud above the irradiated spot). Research limitations/implications: Accuracy of the results depends on the accuracy of physical parameters of materials entering the model and their temperature dependencies. These quantities are functions of chemical composition of the materials used, and may more or less differ from the values delivered by manufacturers. Also, the above subtle physical phenomena exhibit stochastic character and their modeling may be accompanied by non-negligible uncertainties. Practical implications: The presented model and methodology of its solution may represent a basis for design of welding processes in various branches of industry. Originality/value: The model of a complex multiphysics problem (induction-assisted laser welding) provides reasonable results confirmed by experiments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1607" target="_blank" >LO1607: RICE – Nové technologie a koncepce pro inteligentní průmyslové systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPEL : the International Journal for Computation and Mathematics in Electrical and Electronic Engineering
ISSN
0332-1649
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
1315-1327
Kód UT WoS článku
000447495900002
EID výsledku v databázi Scopus
2-s2.0-85053235819