Electromagnetic radiation efficiency of body-implanted devices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F18%3A43953801" target="_blank" >RIV/49777513:23220/18:43953801 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.9.024033" target="_blank" >https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.9.024033</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevApplied.9.024033" target="_blank" >10.1103/PhysRevApplied.9.024033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electromagnetic radiation efficiency of body-implanted devices
Popis výsledku v původním jazyce
Autonomous wireless body-implanted devices for biotelemetry, telemedicine, and neural interfacing constitute an emerging technology providing powerful capabilities for medicine and clinical research. We study the through-tissue electromagnetic propagation mechanisms, derive the optimal frequency range, and obtain the maximum achievable efficiency for radiative energy transfer from inside a body to free space. We analyze how polarization affects the efficiency by exciting TM and TE modes using a magnetic dipole and a magnetic current source, respectively. Four problem formulations are considered with increasing complexity and realism of anatomy. The results indicate that the optimal operating frequency f for deep implantation (with a depth d3 cm) lies in the (108-109)-Hz range and can be approximated as f=2.2×107/d. For a subcutaneous case (d3 cm), the surface-wave-induced interference is significant: within the range of peak radiation efficiency (about 2×108 to 3×109 Hz), the max-to-min ratio can reach a value of 6.5. For the studied frequency range, 80%-99% of radiation efficiency is lost due to the tissue-air wave-impedance mismatch. Parallel polarization reduces the losses by a few percent; this effect is inversely proportional to the frequency and depth. Considering the implantation depth, the operating frequency, the polarization, and the directivity, we show that about an order-of-magnitude efficiency improvement is achievable compared to existing devices.
Název v anglickém jazyce
Electromagnetic radiation efficiency of body-implanted devices
Popis výsledku anglicky
Autonomous wireless body-implanted devices for biotelemetry, telemedicine, and neural interfacing constitute an emerging technology providing powerful capabilities for medicine and clinical research. We study the through-tissue electromagnetic propagation mechanisms, derive the optimal frequency range, and obtain the maximum achievable efficiency for radiative energy transfer from inside a body to free space. We analyze how polarization affects the efficiency by exciting TM and TE modes using a magnetic dipole and a magnetic current source, respectively. Four problem formulations are considered with increasing complexity and realism of anatomy. The results indicate that the optimal operating frequency f for deep implantation (with a depth d3 cm) lies in the (108-109)-Hz range and can be approximated as f=2.2×107/d. For a subcutaneous case (d3 cm), the surface-wave-induced interference is significant: within the range of peak radiation efficiency (about 2×108 to 3×109 Hz), the max-to-min ratio can reach a value of 6.5. For the studied frequency range, 80%-99% of radiation efficiency is lost due to the tissue-air wave-impedance mismatch. Parallel polarization reduces the losses by a few percent; this effect is inversely proportional to the frequency and depth. Considering the implantation depth, the operating frequency, the polarization, and the directivity, we show that about an order-of-magnitude efficiency improvement is achievable compared to existing devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1607" target="_blank" >LO1607: RICE – Nové technologie a koncepce pro inteligentní průmyslové systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review Applied
ISSN
2331-7019
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000426346700002
EID výsledku v databázi Scopus
2-s2.0-85043480902