Optimal day-ahead self-scheduling and operation of prosumer microgrids using hybrid machine learning-based weather and load forecasting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F20%3A43960460" target="_blank" >RIV/49777513:23220/20:43960460 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9082670" target="_blank" >https://ieeexplore.ieee.org/document/9082670</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2020.2991482" target="_blank" >10.1109/ACCESS.2020.2991482</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal day-ahead self-scheduling and operation of prosumer microgrids using hybrid machine learning-based weather and load forecasting
Popis výsledku v původním jazyce
Prosumer microgrids (PMGs) are considered as active users in smart grids. These units are able to generate and sell electricity to aggregators or neighbor consumers in the prosumer market. Although the optimal scheduling and operation of PMGs have received a great deal of attention in recent studies, the challenges of PMG's uncertainties such as stochastic behavior of load data and weather conditions (solar irradiance, ambient temperature, and wind speed) and corresponding solutions have not been thoroughly investigated. In this paper, a new energy management systems (EMS) based on weather and load forecasting is proposed for PMG's optimal scheduling and operation. Developing a novel hybrid machine learning-based method using adaptive neuro-fuzzy inference system (ANFIS), multilayer perceptron (MLP) articial neural network (ANN), and radial basis function (RBF) ANN to precisely predict the load and weather data is one of the most important contributions of this article. The performance of the forecasting process is improved by using a hybrid machine learning-based forecasting method instead of conventional ones. The demand response (DR) program based on the forecasted data and considering the degradation cost of the battery storage system (BSS) are other contributions. The comparison of obtained test results with those of other existing approaches illustrates that more appropriate PMG's operation cost is achievable by applying the proposed DR-based EMS using a new hybrid machine learning forecasting method.
Název v anglickém jazyce
Optimal day-ahead self-scheduling and operation of prosumer microgrids using hybrid machine learning-based weather and load forecasting
Popis výsledku anglicky
Prosumer microgrids (PMGs) are considered as active users in smart grids. These units are able to generate and sell electricity to aggregators or neighbor consumers in the prosumer market. Although the optimal scheduling and operation of PMGs have received a great deal of attention in recent studies, the challenges of PMG's uncertainties such as stochastic behavior of load data and weather conditions (solar irradiance, ambient temperature, and wind speed) and corresponding solutions have not been thoroughly investigated. In this paper, a new energy management systems (EMS) based on weather and load forecasting is proposed for PMG's optimal scheduling and operation. Developing a novel hybrid machine learning-based method using adaptive neuro-fuzzy inference system (ANFIS), multilayer perceptron (MLP) articial neural network (ANN), and radial basis function (RBF) ANN to precisely predict the load and weather data is one of the most important contributions of this article. The performance of the forecasting process is improved by using a hybrid machine learning-based forecasting method instead of conventional ones. The demand response (DR) program based on the forecasted data and considering the degradation cost of the battery storage system (BSS) are other contributions. The comparison of obtained test results with those of other existing approaches illustrates that more appropriate PMG's operation cost is achievable by applying the proposed DR-based EMS using a new hybrid machine learning forecasting method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
2020
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
157284-157305
Kód UT WoS článku
000568231200001
EID výsledku v databázi Scopus
2-s2.0-85091202604