Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimal day-ahead self-scheduling and operation of prosumer microgrids using hybrid machine learning-based weather and load forecasting

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F20%3A43960460" target="_blank" >RIV/49777513:23220/20:43960460 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9082670" target="_blank" >https://ieeexplore.ieee.org/document/9082670</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2020.2991482" target="_blank" >10.1109/ACCESS.2020.2991482</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimal day-ahead self-scheduling and operation of prosumer microgrids using hybrid machine learning-based weather and load forecasting

  • Popis výsledku v původním jazyce

    Prosumer microgrids (PMGs) are considered as active users in smart grids. These units are able to generate and sell electricity to aggregators or neighbor consumers in the prosumer market. Although the optimal scheduling and operation of PMGs have received a great deal of attention in recent studies, the challenges of PMG&apos;s uncertainties such as stochastic behavior of load data and weather conditions (solar irradiance, ambient temperature, and wind speed) and corresponding solutions have not been thoroughly investigated. In this paper, a new energy management systems (EMS) based on weather and load forecasting is proposed for PMG&apos;s optimal scheduling and operation. Developing a novel hybrid machine learning-based method using adaptive neuro-fuzzy inference system (ANFIS), multilayer perceptron (MLP) articial neural network (ANN), and radial basis function (RBF) ANN to precisely predict the load and weather data is one of the most important contributions of this article. The performance of the forecasting process is improved by using a hybrid machine learning-based forecasting method instead of conventional ones. The demand response (DR) program based on the forecasted data and considering the degradation cost of the battery storage system (BSS) are other contributions. The comparison of obtained test results with those of other existing approaches illustrates that more appropriate PMG&apos;s operation cost is achievable by applying the proposed DR-based EMS using a new hybrid machine learning forecasting method.

  • Název v anglickém jazyce

    Optimal day-ahead self-scheduling and operation of prosumer microgrids using hybrid machine learning-based weather and load forecasting

  • Popis výsledku anglicky

    Prosumer microgrids (PMGs) are considered as active users in smart grids. These units are able to generate and sell electricity to aggregators or neighbor consumers in the prosumer market. Although the optimal scheduling and operation of PMGs have received a great deal of attention in recent studies, the challenges of PMG&apos;s uncertainties such as stochastic behavior of load data and weather conditions (solar irradiance, ambient temperature, and wind speed) and corresponding solutions have not been thoroughly investigated. In this paper, a new energy management systems (EMS) based on weather and load forecasting is proposed for PMG&apos;s optimal scheduling and operation. Developing a novel hybrid machine learning-based method using adaptive neuro-fuzzy inference system (ANFIS), multilayer perceptron (MLP) articial neural network (ANN), and radial basis function (RBF) ANN to precisely predict the load and weather data is one of the most important contributions of this article. The performance of the forecasting process is improved by using a hybrid machine learning-based forecasting method instead of conventional ones. The demand response (DR) program based on the forecasted data and considering the degradation cost of the battery storage system (BSS) are other contributions. The comparison of obtained test results with those of other existing approaches illustrates that more appropriate PMG&apos;s operation cost is achievable by applying the proposed DR-based EMS using a new hybrid machine learning forecasting method.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    2020

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    22

  • Strana od-do

    157284-157305

  • Kód UT WoS článku

    000568231200001

  • EID výsledku v databázi Scopus

    2-s2.0-85091202604