Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Robust design optimization and emerging technologies for electrical machines: challenges and open problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F20%3A43960583" target="_blank" >RIV/49777513:23220/20:43960583 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2076-3417/10/19/6653" target="_blank" >https://www.mdpi.com/2076-3417/10/19/6653</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/APP10196653" target="_blank" >10.3390/APP10196653</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Robust design optimization and emerging technologies for electrical machines: challenges and open problems

  • Popis výsledku v původním jazyce

    The bio-inspired algorithms are novel, modern, and efficient tools for the design of electrical machines. However, from the mathematical point of view, these problems belong to the most general branch of non-linear optimization problems, where these tools cannot guarantee that a global minimum is found. The numerical cost and the accuracy of these algorithms depend on the initialization of their internal parameters, which may themselves be the subject of parameter tuning according to the application. In practice, these optimization problems are even more challenging, because engineers are looking for robust designs, which are not sensitive to the tolerances and the manufacturing uncertainties. These criteria further increase these computationally expensive problems due to the additional evaluations of the goal function. The goal of this paper is to give an overview of the widely used optimization techniques in electrical machinery and to summarize the challenges and open problems in the applications of the robust design optimization and the prospects in the case of the newly emerging technologies.

  • Název v anglickém jazyce

    Robust design optimization and emerging technologies for electrical machines: challenges and open problems

  • Popis výsledku anglicky

    The bio-inspired algorithms are novel, modern, and efficient tools for the design of electrical machines. However, from the mathematical point of view, these problems belong to the most general branch of non-linear optimization problems, where these tools cannot guarantee that a global minimum is found. The numerical cost and the accuracy of these algorithms depend on the initialization of their internal parameters, which may themselves be the subject of parameter tuning according to the application. In practice, these optimization problems are even more challenging, because engineers are looking for robust designs, which are not sensitive to the tolerances and the manufacturing uncertainties. These criteria further increase these computationally expensive problems due to the additional evaluations of the goal function. The goal of this paper is to give an overview of the widely used optimization techniques in electrical machinery and to summarize the challenges and open problems in the applications of the robust design optimization and the prospects in the case of the newly emerging technologies.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences

  • ISSN

    2076-3417

  • e-ISSN

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    33

  • Strana od-do

    1-33

  • Kód UT WoS článku

    000586668400001

  • EID výsledku v databázi Scopus

    2-s2.0-85092471132