Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hybrid machine learning techniques and computational mechanics: estimating the dynamic behavior of oxide precipitation hardened steel

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F21%3A43963576" target="_blank" >RIV/49777513:23220/21:43963576 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68081723:_____/21:00551587

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9620029" target="_blank" >https://ieeexplore.ieee.org/document/9620029</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2021.3129454" target="_blank" >10.1109/ACCESS.2021.3129454</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hybrid machine learning techniques and computational mechanics: estimating the dynamic behavior of oxide precipitation hardened steel

  • Popis výsledku v původním jazyce

    A new generation of Oxide Dispersion Strengthened (ODS) alloys called Oxide Precipitation Hardened (OPH) alloys, has recently been developed by the authors. The excellent mechanical properties can be improved by optimizing the chemical composition in combination with heat treatment. However, the behavior of such materials requires the consideration of a large number of variables, nonlinearities, and uncertainties in the analyses, and the modeling of such alloys by analytical methods is not accurate enough. Therefore, artificial intelligence (AI) methods, such as machine learning (ML), can be beneficial to alleviate the problems associated with the complexity of these alloys. In this work, three different hybrid ML techniques have been employed to estimate the ultimate tensile strength (UTS) and elongation in these special alloys. The proposed methods include a feedforward artificial neural network (FF-ANN) trained using particle swarm optimization (PSO) and two adaptive neuro-fuzzy inference system (ANFIS) methods trained using both fuzzy C-means (FCM) clustering and subtractive clustering (SC). Since OPH alloys are mainly produced via mechanical alloying (MA) of a mixture of powder components followed by consolidation and hot rolling, a series of standard tensile tests were performed on the different variants of the OPH alloy. In this way, some critical parameters such as UTS and elongation could be extracted from the experimental results. The main contribution of the present study is to estimate these important parameters based on some material properties including Aluminum (Al), Molybdenum (Mo), Iron (Fe), Chromium (Cr), Tantalum (Ta), Yttrium (Y) and Oxygen (O), MA and the heat treatment conditions. The results show that the proposed strategies are not only able to accurately determine the complex behavior of OPH alloy with an accuracy of about 95%, but they can also help the designer to benefit from these powerful tools to design new versions of such materials without analytical calculations.

  • Název v anglickém jazyce

    Hybrid machine learning techniques and computational mechanics: estimating the dynamic behavior of oxide precipitation hardened steel

  • Popis výsledku anglicky

    A new generation of Oxide Dispersion Strengthened (ODS) alloys called Oxide Precipitation Hardened (OPH) alloys, has recently been developed by the authors. The excellent mechanical properties can be improved by optimizing the chemical composition in combination with heat treatment. However, the behavior of such materials requires the consideration of a large number of variables, nonlinearities, and uncertainties in the analyses, and the modeling of such alloys by analytical methods is not accurate enough. Therefore, artificial intelligence (AI) methods, such as machine learning (ML), can be beneficial to alleviate the problems associated with the complexity of these alloys. In this work, three different hybrid ML techniques have been employed to estimate the ultimate tensile strength (UTS) and elongation in these special alloys. The proposed methods include a feedforward artificial neural network (FF-ANN) trained using particle swarm optimization (PSO) and two adaptive neuro-fuzzy inference system (ANFIS) methods trained using both fuzzy C-means (FCM) clustering and subtractive clustering (SC). Since OPH alloys are mainly produced via mechanical alloying (MA) of a mixture of powder components followed by consolidation and hot rolling, a series of standard tensile tests were performed on the different variants of the OPH alloy. In this way, some critical parameters such as UTS and elongation could be extracted from the experimental results. The main contribution of the present study is to estimate these important parameters based on some material properties including Aluminum (Al), Molybdenum (Mo), Iron (Fe), Chromium (Cr), Tantalum (Ta), Yttrium (Y) and Oxygen (O), MA and the heat treatment conditions. The results show that the proposed strategies are not only able to accurately determine the complex behavior of OPH alloy with an accuracy of about 95%, but they can also help the designer to benefit from these powerful tools to design new versions of such materials without analytical calculations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX21-02203X" target="_blank" >GX21-02203X: Vylepšení vlastností současných špičkových slitin</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    December 2021

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    156930-156946

  • Kód UT WoS článku

    000724466600001

  • EID výsledku v databázi Scopus

    2-s2.0-85120078266