Hybrid machine learning techniques and computational mechanics: estimating the dynamic behavior of oxide precipitation hardened steel
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F21%3A43963576" target="_blank" >RIV/49777513:23220/21:43963576 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081723:_____/21:00551587
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9620029" target="_blank" >https://ieeexplore.ieee.org/document/9620029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3129454" target="_blank" >10.1109/ACCESS.2021.3129454</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid machine learning techniques and computational mechanics: estimating the dynamic behavior of oxide precipitation hardened steel
Popis výsledku v původním jazyce
A new generation of Oxide Dispersion Strengthened (ODS) alloys called Oxide Precipitation Hardened (OPH) alloys, has recently been developed by the authors. The excellent mechanical properties can be improved by optimizing the chemical composition in combination with heat treatment. However, the behavior of such materials requires the consideration of a large number of variables, nonlinearities, and uncertainties in the analyses, and the modeling of such alloys by analytical methods is not accurate enough. Therefore, artificial intelligence (AI) methods, such as machine learning (ML), can be beneficial to alleviate the problems associated with the complexity of these alloys. In this work, three different hybrid ML techniques have been employed to estimate the ultimate tensile strength (UTS) and elongation in these special alloys. The proposed methods include a feedforward artificial neural network (FF-ANN) trained using particle swarm optimization (PSO) and two adaptive neuro-fuzzy inference system (ANFIS) methods trained using both fuzzy C-means (FCM) clustering and subtractive clustering (SC). Since OPH alloys are mainly produced via mechanical alloying (MA) of a mixture of powder components followed by consolidation and hot rolling, a series of standard tensile tests were performed on the different variants of the OPH alloy. In this way, some critical parameters such as UTS and elongation could be extracted from the experimental results. The main contribution of the present study is to estimate these important parameters based on some material properties including Aluminum (Al), Molybdenum (Mo), Iron (Fe), Chromium (Cr), Tantalum (Ta), Yttrium (Y) and Oxygen (O), MA and the heat treatment conditions. The results show that the proposed strategies are not only able to accurately determine the complex behavior of OPH alloy with an accuracy of about 95%, but they can also help the designer to benefit from these powerful tools to design new versions of such materials without analytical calculations.
Název v anglickém jazyce
Hybrid machine learning techniques and computational mechanics: estimating the dynamic behavior of oxide precipitation hardened steel
Popis výsledku anglicky
A new generation of Oxide Dispersion Strengthened (ODS) alloys called Oxide Precipitation Hardened (OPH) alloys, has recently been developed by the authors. The excellent mechanical properties can be improved by optimizing the chemical composition in combination with heat treatment. However, the behavior of such materials requires the consideration of a large number of variables, nonlinearities, and uncertainties in the analyses, and the modeling of such alloys by analytical methods is not accurate enough. Therefore, artificial intelligence (AI) methods, such as machine learning (ML), can be beneficial to alleviate the problems associated with the complexity of these alloys. In this work, three different hybrid ML techniques have been employed to estimate the ultimate tensile strength (UTS) and elongation in these special alloys. The proposed methods include a feedforward artificial neural network (FF-ANN) trained using particle swarm optimization (PSO) and two adaptive neuro-fuzzy inference system (ANFIS) methods trained using both fuzzy C-means (FCM) clustering and subtractive clustering (SC). Since OPH alloys are mainly produced via mechanical alloying (MA) of a mixture of powder components followed by consolidation and hot rolling, a series of standard tensile tests were performed on the different variants of the OPH alloy. In this way, some critical parameters such as UTS and elongation could be extracted from the experimental results. The main contribution of the present study is to estimate these important parameters based on some material properties including Aluminum (Al), Molybdenum (Mo), Iron (Fe), Chromium (Cr), Tantalum (Ta), Yttrium (Y) and Oxygen (O), MA and the heat treatment conditions. The results show that the proposed strategies are not only able to accurately determine the complex behavior of OPH alloy with an accuracy of about 95%, but they can also help the designer to benefit from these powerful tools to design new versions of such materials without analytical calculations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GX21-02203X" target="_blank" >GX21-02203X: Vylepšení vlastností současných špičkových slitin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
December 2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
156930-156946
Kód UT WoS článku
000724466600001
EID výsledku v databázi Scopus
2-s2.0-85120078266