Identification of Thermal Model Parameters Using Deep Learning Techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F22%3A43965479" target="_blank" >RIV/49777513:23220/22:43965479 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9831641" target="_blank" >https://ieeexplore.ieee.org/document/9831641</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISIE51582.2022.9831641" target="_blank" >10.1109/ISIE51582.2022.9831641</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Identification of Thermal Model Parameters Using Deep Learning Techniques
Popis výsledku v původním jazyce
Identification of thermal model parameters using multi-step prediction is proposed. Even in the case of a linear model, the multi-step prediction is a non-linear complex function, hence we use techniques of deep learning for its identification. Specifically, we use stochastic gradient descent optimization with importance sampling of mini-batches. The importance function is designed to match the character of thermal experiments in which the step change is less frequent than steady-state operation. The proposed method is demonstrated on the identification of an IGBT module SK 20 DGDL 065 ET. The maximum error of the model identified by the multi-step approach is almost two times smaller than that of the model identified by the least squares.
Název v anglickém jazyce
Identification of Thermal Model Parameters Using Deep Learning Techniques
Popis výsledku anglicky
Identification of thermal model parameters using multi-step prediction is proposed. Even in the case of a linear model, the multi-step prediction is a non-linear complex function, hence we use techniques of deep learning for its identification. Specifically, we use stochastic gradient descent optimization with importance sampling of mini-batches. The importance function is designed to match the character of thermal experiments in which the step change is less frequent than steady-state operation. The proposed method is demonstrated on the identification of an IGBT module SK 20 DGDL 065 ET. The maximum error of the model identified by the multi-step approach is almost two times smaller than that of the model identified by the least squares.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_069%2F0009855" target="_blank" >EF18_069/0009855: Elektrotechnické technologie s vysokým podílem vestavěné inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 IEEE 31st International Symposium on Industrial Electronics (ISIE) : /proceedings/
ISBN
978-1-66548-240-0
ISSN
2163-5145
e-ISSN
—
Počet stran výsledku
4
Strana od-do
978-981
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Anchorage, Alaska, USA
Datum konání akce
1. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000946662000151