Optimal clustering-based operation of smart railway stations considering uncertainties of renewable energy sources and regenerative braking energies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F22%3A43965799" target="_blank" >RIV/49777513:23220/22:43965799 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S037877962200801X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S037877962200801X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.epsr.2022.108744" target="_blank" >10.1016/j.epsr.2022.108744</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal clustering-based operation of smart railway stations considering uncertainties of renewable energy sources and regenerative braking energies
Popis výsledku v původním jazyce
The smart railway stations (SRSs), as prosumer microgrids, are considered active users in smart grids. By utilizing regenerative braking energy (RBE) and renewable energy resources (RERs) along with energy storage systems (ESSs), these SRSs can participate in the prosumer market. The uncertainties of RERs in SRSs due to meteorological factors have been studied in the literature. However, there is a research gap in developing a stochastic method for optimized operating of SRSs considering the RBE uncertainties besides the RER, load, and number of passengers’ uncertainties. In this paper, a new probabilistic clustering-based framework for the optimal operation of SRSs is presented. By applying Monte Carlo Simulations (MCS), several scenarios are generated and then clustered by the k-means algorithm. The introduced method is applied to an actual SRS in Tehran Urban and Suburban Railway Operation Company. The test results of the MCS, deterministic, and proposed scenario-based approaches are compared to illustrate the proposed method. Test results imply that the related error of the scenario-based method under the real-time pricing can be less than 4.4%, while the computation time significantly decreases. Furthermore, sensitivity analysis is done to determine how the exchanging power constraints and ESS capacity might influence the SRS operation.
Název v anglickém jazyce
Optimal clustering-based operation of smart railway stations considering uncertainties of renewable energy sources and regenerative braking energies
Popis výsledku anglicky
The smart railway stations (SRSs), as prosumer microgrids, are considered active users in smart grids. By utilizing regenerative braking energy (RBE) and renewable energy resources (RERs) along with energy storage systems (ESSs), these SRSs can participate in the prosumer market. The uncertainties of RERs in SRSs due to meteorological factors have been studied in the literature. However, there is a research gap in developing a stochastic method for optimized operating of SRSs considering the RBE uncertainties besides the RER, load, and number of passengers’ uncertainties. In this paper, a new probabilistic clustering-based framework for the optimal operation of SRSs is presented. By applying Monte Carlo Simulations (MCS), several scenarios are generated and then clustered by the k-means algorithm. The introduced method is applied to an actual SRS in Tehran Urban and Suburban Railway Operation Company. The test results of the MCS, deterministic, and proposed scenario-based approaches are compared to illustrate the proposed method. Test results imply that the related error of the scenario-based method under the real-time pricing can be less than 4.4%, while the computation time significantly decreases. Furthermore, sensitivity analysis is done to determine how the exchanging power constraints and ESS capacity might influence the SRS operation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ELECTRIC POWER SYSTEMS RESEARCH
ISSN
0378-7796
e-ISSN
1873-2046
Svazek periodika
213
Číslo periodika v rámci svazku
December 2022
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000863067700002
EID výsledku v databázi Scopus
2-s2.0-85136575590