Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimal clustering-based operation of smart railway stations considering uncertainties of renewable energy sources and regenerative braking energies

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F22%3A43965799" target="_blank" >RIV/49777513:23220/22:43965799 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S037877962200801X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S037877962200801X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.epsr.2022.108744" target="_blank" >10.1016/j.epsr.2022.108744</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimal clustering-based operation of smart railway stations considering uncertainties of renewable energy sources and regenerative braking energies

  • Popis výsledku v původním jazyce

    The smart railway stations (SRSs), as prosumer microgrids, are considered active users in smart grids. By utilizing regenerative braking energy (RBE) and renewable energy resources (RERs) along with energy storage systems (ESSs), these SRSs can participate in the prosumer market. The uncertainties of RERs in SRSs due to meteorological factors have been studied in the literature. However, there is a research gap in developing a stochastic method for optimized operating of SRSs considering the RBE uncertainties besides the RER, load, and number of passengers’ uncertainties. In this paper, a new probabilistic clustering-based framework for the optimal operation of SRSs is presented. By applying Monte Carlo Simulations (MCS), several scenarios are generated and then clustered by the k-means algorithm. The introduced method is applied to an actual SRS in Tehran Urban and Suburban Railway Operation Company. The test results of the MCS, deterministic, and proposed scenario-based approaches are compared to illustrate the proposed method. Test results imply that the related error of the scenario-based method under the real-time pricing can be less than 4.4%, while the computation time significantly decreases. Furthermore, sensitivity analysis is done to determine how the exchanging power constraints and ESS capacity might influence the SRS operation.

  • Název v anglickém jazyce

    Optimal clustering-based operation of smart railway stations considering uncertainties of renewable energy sources and regenerative braking energies

  • Popis výsledku anglicky

    The smart railway stations (SRSs), as prosumer microgrids, are considered active users in smart grids. By utilizing regenerative braking energy (RBE) and renewable energy resources (RERs) along with energy storage systems (ESSs), these SRSs can participate in the prosumer market. The uncertainties of RERs in SRSs due to meteorological factors have been studied in the literature. However, there is a research gap in developing a stochastic method for optimized operating of SRSs considering the RBE uncertainties besides the RER, load, and number of passengers’ uncertainties. In this paper, a new probabilistic clustering-based framework for the optimal operation of SRSs is presented. By applying Monte Carlo Simulations (MCS), several scenarios are generated and then clustered by the k-means algorithm. The introduced method is applied to an actual SRS in Tehran Urban and Suburban Railway Operation Company. The test results of the MCS, deterministic, and proposed scenario-based approaches are compared to illustrate the proposed method. Test results imply that the related error of the scenario-based method under the real-time pricing can be less than 4.4%, while the computation time significantly decreases. Furthermore, sensitivity analysis is done to determine how the exchanging power constraints and ESS capacity might influence the SRS operation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ELECTRIC POWER SYSTEMS RESEARCH

  • ISSN

    0378-7796

  • e-ISSN

    1873-2046

  • Svazek periodika

    213

  • Číslo periodika v rámci svazku

    December 2022

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    15

  • Strana od-do

    1-15

  • Kód UT WoS článku

    000863067700002

  • EID výsledku v databázi Scopus

    2-s2.0-85136575590