Cancer Digital Twins in Metaverse
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F22%3A43966896" target="_blank" >RIV/49777513:23220/22:43966896 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9983328" target="_blank" >https://ieeexplore.ieee.org/document/9983328</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ME54704.2022.9983328" target="_blank" >10.1109/ME54704.2022.9983328</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cancer Digital Twins in Metaverse
Popis výsledku v původním jazyce
The Metaverse is an emerging technology to make virtual environments for users to benefit from a huge number of virtual services, while users experience immersive interactions with the real world. Digital twins, which are representatives of assets in this virtual world, play an important role to connect this environment to the actual world. Therefore, translating problematic assets, objects, and disease like cancers to this cyber world provide patients with this opportunity to benefit from its advantages. This study aims to conceptualize an approach to how machine learning (ML) can realize real-time and robust digital twins of cancers to be used in the Metaverse for diagnosis and treatment. While there are a large number of ML methods, which have advantages based on the various types of healthcare data, four classic ML techniques, including ML linear regression (ML LR), decision tree regression (DTR), Random Forest Regression (RFR), and Gradient Boosting Algorithm (GBA), have been employed to implement the main part of this approach in this research. Moreover, a comprehensive conceptual framework of the ML digital twinning method has been presented to illustrate the process of digital twining cancers with different medical data.
Název v anglickém jazyce
Cancer Digital Twins in Metaverse
Popis výsledku anglicky
The Metaverse is an emerging technology to make virtual environments for users to benefit from a huge number of virtual services, while users experience immersive interactions with the real world. Digital twins, which are representatives of assets in this virtual world, play an important role to connect this environment to the actual world. Therefore, translating problematic assets, objects, and disease like cancers to this cyber world provide patients with this opportunity to benefit from its advantages. This study aims to conceptualize an approach to how machine learning (ML) can realize real-time and robust digital twins of cancers to be used in the Metaverse for diagnosis and treatment. While there are a large number of ML methods, which have advantages based on the various types of healthcare data, four classic ML techniques, including ML linear regression (ML LR), decision tree regression (DTR), Random Forest Regression (RFR), and Gradient Boosting Algorithm (GBA), have been employed to implement the main part of this approach in this research. Moreover, a comprehensive conceptual framework of the ML digital twinning method has been presented to illustrate the process of digital twining cancers with different medical data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_053%2F0016927" target="_blank" >EF18_053/0016927: Mobility Západočeské univerzity v Plzni</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2022 20th International Conference on Mechatronics - Mechatronika, ME 2022
ISBN
978-1-66541-040-3
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
404-409
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Pilsen, Czech Republic
Datum konání akce
7. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000947331700058