Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A New Design Method for Class-E Power Amplifiers Using Artificial Intelligence Modeling for Wireless Power Transfer Applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F22%3A43968077" target="_blank" >RIV/49777513:23220/22:43968077 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2079-9292/11/21/3608" target="_blank" >https://www.mdpi.com/2079-9292/11/21/3608</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/electronics11213608" target="_blank" >10.3390/electronics11213608</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A New Design Method for Class-E Power Amplifiers Using Artificial Intelligence Modeling for Wireless Power Transfer Applications

  • Popis výsledku v původním jazyce

    This paper presents a new approach to simplify the design of class-E power amplifier (PA) using hybrid artificial neural-optimization network modeling. The class-E PA is designed for wireless power transfer (WPT) applications to be used in biomedical or internet of things (IoT) devices. Artificial neural network (ANN) models are combined with optimization algorithms to support the design of the class-E PA. In several amplifier circuits, the closed form equations cannot be extracted. Hence, the complicated numerical calculations are needed to find the circuit elements values and then to design the amplifier. Therefore, for the first time, ANN modeling is proposed in this paper to predict the values of the circuit elements without using the complex equations. In comparison with the other similar models, high accuracy has been obtained for the proposed model with mean absolute errors (MAEs) of 0.0110 and 0.0099, for train and test results. Moreover, root mean square errors (RMSEs) of 0.0163 and 0.0124 have been achieved for train and test results for the proposed model. Moreover, the best and the worst-case related errors of 0.001 and 0.168 have been obtained, respectively, for the both design examples at different frequencies, which shows high accuracy of the proposed ANN design method. Finally, a design of class-E PA is presented using the circuit elements values that, first, extracted by the analyses, and second, predicted by ANN. The calculated drain efficiencies for the designed class-E amplifiers have been obtained equal to 95.5% and 91.2% by using analyses data and predicted data by proposed ANN, respectively. The comparison between the real and predicted values shows a good agreement.

  • Název v anglickém jazyce

    A New Design Method for Class-E Power Amplifiers Using Artificial Intelligence Modeling for Wireless Power Transfer Applications

  • Popis výsledku anglicky

    This paper presents a new approach to simplify the design of class-E power amplifier (PA) using hybrid artificial neural-optimization network modeling. The class-E PA is designed for wireless power transfer (WPT) applications to be used in biomedical or internet of things (IoT) devices. Artificial neural network (ANN) models are combined with optimization algorithms to support the design of the class-E PA. In several amplifier circuits, the closed form equations cannot be extracted. Hence, the complicated numerical calculations are needed to find the circuit elements values and then to design the amplifier. Therefore, for the first time, ANN modeling is proposed in this paper to predict the values of the circuit elements without using the complex equations. In comparison with the other similar models, high accuracy has been obtained for the proposed model with mean absolute errors (MAEs) of 0.0110 and 0.0099, for train and test results. Moreover, root mean square errors (RMSEs) of 0.0163 and 0.0124 have been achieved for train and test results for the proposed model. Moreover, the best and the worst-case related errors of 0.001 and 0.168 have been obtained, respectively, for the both design examples at different frequencies, which shows high accuracy of the proposed ANN design method. Finally, a design of class-E PA is presented using the circuit elements values that, first, extracted by the analyses, and second, predicted by ANN. The calculated drain efficiencies for the designed class-E amplifiers have been obtained equal to 95.5% and 91.2% by using analyses data and predicted data by proposed ANN, respectively. The comparison between the real and predicted values shows a good agreement.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electronics

  • ISSN

    2079-9292

  • e-ISSN

    2079-9292

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    21

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Kód UT WoS článku

    000883378800001

  • EID výsledku v databázi Scopus

    2-s2.0-85141697161