Improved model of rapid cooling in the process of laser or small-scale induction hardening
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F23%3A43970135" target="_blank" >RIV/49777513:23220/23:43970135 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10285313" target="_blank" >https://ieeexplore.ieee.org/document/10285313</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CPEE59623.2023.10285313" target="_blank" >10.1109/CPEE59623.2023.10285313</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improved model of rapid cooling in the process of laser or small-scale induction hardening
Popis výsledku v původním jazyce
The paper presents and discusses an enhanced version of modeling laser or small-scale induction hardening. The process is characterized by a rapid cooling rate, reaching several hundred or over one thousand degrees Celsius per second. Most heat from the heated spot is transferred through conduction rather than convection, penetrating deep into the material’s interior. Consequently, determining the surface hardness based on the continuous cooling transform (CCT) diagram is challenging. Typically, the cooling curves in the CCT diagram are only available for rates of around tens of degrees Celsius per second. To address this issue, the paper introduces a model that utilizes optimization procedures supplemented by calibration through specific measurements to estimate the resulting hardness. The methodology is demonstrated through an illustrative example, and the obtained results are compared.
Název v anglickém jazyce
Improved model of rapid cooling in the process of laser or small-scale induction hardening
Popis výsledku anglicky
The paper presents and discusses an enhanced version of modeling laser or small-scale induction hardening. The process is characterized by a rapid cooling rate, reaching several hundred or over one thousand degrees Celsius per second. Most heat from the heated spot is transferred through conduction rather than convection, penetrating deep into the material’s interior. Consequently, determining the surface hardness based on the continuous cooling transform (CCT) diagram is challenging. Typically, the cooling curves in the CCT diagram are only available for rates of around tens of degrees Celsius per second. To address this issue, the paper introduces a model that utilizes optimization procedures supplemented by calibration through specific measurements to estimate the resulting hardness. The methodology is demonstrated through an illustrative example, and the obtained results are compared.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/FW06010523" target="_blank" >FW06010523: Technologie svařování s laserovým dohřevem</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2023 24th International Conference Computational Problems of Electrical Engineering (CPEE 2023)
ISBN
979-8-3503-3034-2
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Grybow, Poland
Datum konání akce
10. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—