Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An intelligent digital twinning approach for complex circuits

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F24%3A43971891" target="_blank" >RIV/49777513:23220/24:43971891 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1568494624001017?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494624001017?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asoc.2024.111327" target="_blank" >10.1016/j.asoc.2024.111327</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An intelligent digital twinning approach for complex circuits

  • Popis výsledku v původním jazyce

    The digital twinning process is essential for transferring real-world objects to the Metaverse by creating accurate digital versions, known as digital twins. However, complex systems pose challenges in this process. With the increasing utilization of microwave components and circuits in telecommunication systems such as IoT, 5 G, and 6 G, the need for digital twins of these components arises. Nevertheless, high-frequency components exhibit intricate behavior, requiring advanced modeling techniques. Artificial intelligence (AI) provides a powerful tool for enhancing the reliability and accuracy of estimated models in such cases. In this study, a microstrip lowpass filter (LPF) is designed, fabricated, and measured as the physical twin. An intelligent digital twinning approach is employed using a machine learning method based on an adaptive neuro-fuzzy inference system (ANFIS), trained by a subtractive clustering algorithm. The resulting digital twin of the LPF proves valuable for communication networks and IoT applications. Moreover, this research showcases the applicability and accessibility of machine learning in creating digital twins of electromagnetic components for communication cyber-physical systems (CPSs) and the Metaverse. Furthermore, the proposed method exhibits adaptability to various passive and active electrical or electronic circuits. By harnessing the potential of AI and digital twinning, this study presents a robust and accurate approach for modeling and analyzing complex circuits, specifically in the context of communication systems and their integration into the Metaverse. The findings highlight the advantages of an intelligent digital twinning approach and its potential for advancing various domains involving complex circuitry.

  • Název v anglickém jazyce

    An intelligent digital twinning approach for complex circuits

  • Popis výsledku anglicky

    The digital twinning process is essential for transferring real-world objects to the Metaverse by creating accurate digital versions, known as digital twins. However, complex systems pose challenges in this process. With the increasing utilization of microwave components and circuits in telecommunication systems such as IoT, 5 G, and 6 G, the need for digital twins of these components arises. Nevertheless, high-frequency components exhibit intricate behavior, requiring advanced modeling techniques. Artificial intelligence (AI) provides a powerful tool for enhancing the reliability and accuracy of estimated models in such cases. In this study, a microstrip lowpass filter (LPF) is designed, fabricated, and measured as the physical twin. An intelligent digital twinning approach is employed using a machine learning method based on an adaptive neuro-fuzzy inference system (ANFIS), trained by a subtractive clustering algorithm. The resulting digital twin of the LPF proves valuable for communication networks and IoT applications. Moreover, this research showcases the applicability and accessibility of machine learning in creating digital twins of electromagnetic components for communication cyber-physical systems (CPSs) and the Metaverse. Furthermore, the proposed method exhibits adaptability to various passive and active electrical or electronic circuits. By harnessing the potential of AI and digital twinning, this study presents a robust and accurate approach for modeling and analyzing complex circuits, specifically in the context of communication systems and their integration into the Metaverse. The findings highlight the advantages of an intelligent digital twinning approach and its potential for advancing various domains involving complex circuitry.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF18_069%2F0009855" target="_blank" >EF18_069/0009855: Elektrotechnické technologie s vysokým podílem vestavěné inteligence</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Soft Computing

  • ISSN

    1568-4946

  • e-ISSN

    1872-9681

  • Svazek periodika

    154

  • Číslo periodika v rámci svazku

    March 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    001185518700001

  • EID výsledku v databázi Scopus

    2-s2.0-85185557979