An intelligent digital twinning approach for complex circuits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23220%2F24%3A43971891" target="_blank" >RIV/49777513:23220/24:43971891 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494624001017?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494624001017?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2024.111327" target="_blank" >10.1016/j.asoc.2024.111327</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An intelligent digital twinning approach for complex circuits
Popis výsledku v původním jazyce
The digital twinning process is essential for transferring real-world objects to the Metaverse by creating accurate digital versions, known as digital twins. However, complex systems pose challenges in this process. With the increasing utilization of microwave components and circuits in telecommunication systems such as IoT, 5 G, and 6 G, the need for digital twins of these components arises. Nevertheless, high-frequency components exhibit intricate behavior, requiring advanced modeling techniques. Artificial intelligence (AI) provides a powerful tool for enhancing the reliability and accuracy of estimated models in such cases. In this study, a microstrip lowpass filter (LPF) is designed, fabricated, and measured as the physical twin. An intelligent digital twinning approach is employed using a machine learning method based on an adaptive neuro-fuzzy inference system (ANFIS), trained by a subtractive clustering algorithm. The resulting digital twin of the LPF proves valuable for communication networks and IoT applications. Moreover, this research showcases the applicability and accessibility of machine learning in creating digital twins of electromagnetic components for communication cyber-physical systems (CPSs) and the Metaverse. Furthermore, the proposed method exhibits adaptability to various passive and active electrical or electronic circuits. By harnessing the potential of AI and digital twinning, this study presents a robust and accurate approach for modeling and analyzing complex circuits, specifically in the context of communication systems and their integration into the Metaverse. The findings highlight the advantages of an intelligent digital twinning approach and its potential for advancing various domains involving complex circuitry.
Název v anglickém jazyce
An intelligent digital twinning approach for complex circuits
Popis výsledku anglicky
The digital twinning process is essential for transferring real-world objects to the Metaverse by creating accurate digital versions, known as digital twins. However, complex systems pose challenges in this process. With the increasing utilization of microwave components and circuits in telecommunication systems such as IoT, 5 G, and 6 G, the need for digital twins of these components arises. Nevertheless, high-frequency components exhibit intricate behavior, requiring advanced modeling techniques. Artificial intelligence (AI) provides a powerful tool for enhancing the reliability and accuracy of estimated models in such cases. In this study, a microstrip lowpass filter (LPF) is designed, fabricated, and measured as the physical twin. An intelligent digital twinning approach is employed using a machine learning method based on an adaptive neuro-fuzzy inference system (ANFIS), trained by a subtractive clustering algorithm. The resulting digital twin of the LPF proves valuable for communication networks and IoT applications. Moreover, this research showcases the applicability and accessibility of machine learning in creating digital twins of electromagnetic components for communication cyber-physical systems (CPSs) and the Metaverse. Furthermore, the proposed method exhibits adaptability to various passive and active electrical or electronic circuits. By harnessing the potential of AI and digital twinning, this study presents a robust and accurate approach for modeling and analyzing complex circuits, specifically in the context of communication systems and their integration into the Metaverse. The findings highlight the advantages of an intelligent digital twinning approach and its potential for advancing various domains involving complex circuitry.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_069%2F0009855" target="_blank" >EF18_069/0009855: Elektrotechnické technologie s vysokým podílem vestavěné inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing
ISSN
1568-4946
e-ISSN
1872-9681
Svazek periodika
154
Číslo periodika v rámci svazku
March 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
001185518700001
EID výsledku v databázi Scopus
2-s2.0-85185557979