‘The more populism types you know, the better political scientist you are?’ Machine-learning based meta-analysis of populism types in the political science literature
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23330%2F24%3A43968434" target="_blank" >RIV/49777513:23330/24:43968434 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/14782804.2023.2244911?fbclid=IwAR3Z0r9Q4-Ief-_Hya6_SJ26ENmIMKFHmI7-i38aryZTbW_Z9mqsWKnPcb4" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/14782804.2023.2244911?fbclid=IwAR3Z0r9Q4-Ief-_Hya6_SJ26ENmIMKFHmI7-i38aryZTbW_Z9mqsWKnPcb4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/14782804.2023.2244911" target="_blank" >10.1080/14782804.2023.2244911</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
‘The more populism types you know, the better political scientist you are?’ Machine-learning based meta-analysis of populism types in the political science literature
Popis výsledku v původním jazyce
This text builds on existing debates on types of populism in contemporary political science literature. Our premise is that with new types of populism emerging in the debate, and with the significantly increasing number of texts dealing with populism, the types are being hollowed out. Using a dataset consisting of a total of 539 texts published between 2011 and 2020 containing the keyword populism and using a machine-learning based classification model of concordance data, we show that (1.) ambiguities and confusions among the different types of populism become more prominent over the study period, categories become emptier and their usefulness for classification decreases, and (2.) the only stable and consensually defined type in the long run is right-wing populism. We conclude by recommending to depart from creating classifications of types of populism based on specific ideological or non-ideological features and to keep these levels (populism and other features) – within analysis – separate.
Název v anglickém jazyce
‘The more populism types you know, the better political scientist you are?’ Machine-learning based meta-analysis of populism types in the political science literature
Popis výsledku anglicky
This text builds on existing debates on types of populism in contemporary political science literature. Our premise is that with new types of populism emerging in the debate, and with the significantly increasing number of texts dealing with populism, the types are being hollowed out. Using a dataset consisting of a total of 539 texts published between 2011 and 2020 containing the keyword populism and using a machine-learning based classification model of concordance data, we show that (1.) ambiguities and confusions among the different types of populism become more prominent over the study period, categories become emptier and their usefulness for classification decreases, and (2.) the only stable and consensually defined type in the long run is right-wing populism. We conclude by recommending to depart from creating classifications of types of populism based on specific ideological or non-ideological features and to keep these levels (populism and other features) – within analysis – separate.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50601 - Political science
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Contemporary European Studies
ISSN
1478-2804
e-ISSN
1478-2790
Svazek periodika
32
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
1057-1074
Kód UT WoS článku
001044259600001
EID výsledku v databázi Scopus
2-s2.0-85167397817