On the amount of speech data necessary for successful speaker identification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F03%3A00000154" target="_blank" >RIV/49777513:23520/03:00000154 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the amount of speech data necessary for successful speaker identification
Popis výsledku v původním jazyce
The paper deals with the dependence between the speaker identification performance and the amount of test data. Three speaker identification procedures based on hidden Markov models (HMMs) of phonemes are presented here. One, which is quite commonly us ed in the speaker recognition systems based on HMMs, uses the likelihood of the whole utterance for speaker identification. The other two that are proposed in this paper are based on the majority voting rule. The experiments were performed for two diff erent situations: either both training and test data were obtained from the same channel, or they were obtained from different channels. All experiments show that the proposed speaker identification procedure based on the majority voting rule for sequen ces of phonemes allows us to reduce the amount of test data necessary for successful speaker identification.
Název v anglickém jazyce
On the amount of speech data necessary for successful speaker identification
Popis výsledku anglicky
The paper deals with the dependence between the speaker identification performance and the amount of test data. Three speaker identification procedures based on hidden Markov models (HMMs) of phonemes are presented here. One, which is quite commonly us ed in the speaker recognition systems based on HMMs, uses the likelihood of the whole utterance for speaker identification. The other two that are proposed in this paper are based on the majority voting rule. The experiments were performed for two diff erent situations: either both training and test data were obtained from the same channel, or they were obtained from different channels. All experiments show that the proposed speaker identification procedure based on the majority voting rule for sequen ces of phonemes allows us to reduce the amount of test data necessary for successful speaker identification.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F02%2F0124" target="_blank" >GA102/02/0124: Hlasové technologie v podpoře informační společnosti</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EUROSPEECH 2003 PROCEEDINGS
ISBN
—
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
3021-3024
Název nakladatele
ISCA
Místo vydání
Geneva
Místo konání akce
Geneva
Datum konání akce
1. 9. 2003
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—