Nonlinear boundary value problems with asymmetric nonlinearities - periodic solutions and the Fucik spectrum
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F03%3A00000247" target="_blank" >RIV/49777513:23520/03:00000247 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonlinear boundary value problems with asymmetric nonlinearities - periodic solutions and the Fucik spectrum
Popis výsledku v původním jazyce
The whole thesis is devoted to problems containing so called jumping nonlinearities. This type of nonlinearity can reflect a transition between two media or can model a jump in properties of two media crossing their mutual boundary line. The precise description of the solution set of an ODE periodic problem with an asymmetric nonlinearity is given with respect to all its parameters. The existence of multiple periodic solutions is proved for an ODE periodic problem with a perturbed right-hand side. Bo th previous results are applied to two mathematical models. In the case of the model of a suspension bridge, the importance of the Fucik spectrum is shown, the correspondence of points of resonance and asymptotic bifurcation points is given. Some branch es of the Fucik spectrum for a wave operator are explored using a continuation shooting method. Moreover, some qualitative properties of the Fucik spectrum are explored, which are not observable in the case of ordinary differential operato
Název v anglickém jazyce
Nonlinear boundary value problems with asymmetric nonlinearities - periodic solutions and the Fucik spectrum
Popis výsledku anglicky
The whole thesis is devoted to problems containing so called jumping nonlinearities. This type of nonlinearity can reflect a transition between two media or can model a jump in properties of two media crossing their mutual boundary line. The precise description of the solution set of an ODE periodic problem with an asymmetric nonlinearity is given with respect to all its parameters. The existence of multiple periodic solutions is proved for an ODE periodic problem with a perturbed right-hand side. Bo th previous results are applied to two mathematical models. In the case of the model of a suspension bridge, the importance of the Fucik spectrum is shown, the correspondence of points of resonance and asymptotic bifurcation points is given. Some branch es of the Fucik spectrum for a wave operator are explored using a continuation shooting method. Moreover, some qualitative properties of the Fucik spectrum are explored, which are not observable in the case of ordinary differential operato
Klasifikace
Druh
B - Odborná kniha
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F03%2F0671" target="_blank" >GA201/03/0671: Kvalitativní a numerická analýza nelineárních diferenciálních rovnic</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Počet stran knihy
194
Název nakladatele
Neuveden
Místo vydání
Plzeň
Kód UT WoS knihy
—