Modelovani měkkých biologických tkání s deformačně indukovaným mikrotokem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F06%3A00000156" target="_blank" >RIV/49777513:23520/06:00000156 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling Large-deformation-induced Microflow in Soft Biological Tissues
Popis výsledku v původním jazyce
The homogenization approach to multiscale modeling of soft biological tissues is presented. The homogenized model describes the relationship between the macroscopic hereditary creep behavior and the microflow in a fluid-saturated dual-porous medium at the microscopic level. The micromodel is based on Biot’s system for quasistatic deformation processes, modified for the updated Lagrangian formulation to account for coupling the fluid diffusion through a porous solid undergoing large deformation. Its microstructure is constituted by fluid-filled inclusions embedded in the porous matrix. The tangential stiffness coefficients and the retardation stress for the macromodel are derived for a time-stepping algorithm. Numerical examples are discussed, showing the strong potential of the model for simulations of deformation-driven physiological processes at the microscopic scale.
Název v anglickém jazyce
Modeling Large-deformation-induced Microflow in Soft Biological Tissues
Popis výsledku anglicky
The homogenization approach to multiscale modeling of soft biological tissues is presented. The homogenized model describes the relationship between the macroscopic hereditary creep behavior and the microflow in a fluid-saturated dual-porous medium at the microscopic level. The micromodel is based on Biot’s system for quasistatic deformation processes, modified for the updated Lagrangian formulation to account for coupling the fluid diffusion through a porous solid undergoing large deformation. Its microstructure is constituted by fluid-filled inclusions embedded in the porous matrix. The tangential stiffness coefficients and the retardation stress for the macromodel are derived for a time-stepping algorithm. Numerical examples are discussed, showing the strong potential of the model for simulations of deformation-driven physiological processes at the microscopic scale.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JI - Kompositní materiály
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical and Computational Fluid Dynamics
ISSN
0935-4964
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
—
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
26
Strana od-do
251
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—