O dolních a horních řešeních bez uspořádání na časových škálách
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F06%3A00000301" target="_blank" >RIV/49777513:23520/06:00000301 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Lower and Upper Solutions without ordering on Time Scales
Popis výsledku v původním jazyce
In order to enlarge the set of boundary value problems on time scales, for which we can use the lower and upper solutions technique to get existence of solutions, we extend this method to the case when the pair lacks ordering. We use the degree theory and a priori estimates to obtain the existence of solutions for the second-order Dirichlet boundary value problems. To illustrate a wider application of this result, we conclude with an example which shows that a combination of well and non-well ordered pairs can yield the existence of multiple solutions.
Název v anglickém jazyce
On Lower and Upper Solutions without ordering on Time Scales
Popis výsledku anglicky
In order to enlarge the set of boundary value problems on time scales, for which we can use the lower and upper solutions technique to get existence of solutions, we extend this method to the case when the pair lacks ordering. We use the degree theory and a priori estimates to obtain the existence of solutions for the second-order Dirichlet boundary value problems. To illustrate a wider application of this result, we conclude with an example which shows that a combination of well and non-well ordered pairs can yield the existence of multiple solutions.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances of Difference Equations
ISSN
1687-1847
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
—
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
1
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—