Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Adaptation of a Feedforward Artificial Neural Network Using a Linear Transform

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F10%3A00504218" target="_blank" >RIV/49777513:23520/10:00504218 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Adaptation of a Feedforward Artificial Neural Network Using a Linear Transform

  • Popis výsledku v původním jazyce

    In this paper we present a novel method for adaptation of a multi-layer perceptron neural network (MLP ANN). Nowadays, the adaptation of the ANN is usually done as an incremental retraining either of a subset or the complete set of the ANN parameters. However, since sometimes the amount of the adaptation data is quite small, there is a fundamental drawback of such approach -- during retraining, the network parameters can be easily overfitted to the new data. There certainly are techniques that can helpovercome this problem (early-stopping, cross-validation), however application of such techniques leads to more complex and possibly more data hungry training procedure. The proposed method approaches the problem from a different perspective. We use the fact that in many cases we have an additional knowledge about the problem. Such additional knowledge can be used to limit the dimensionality of the adaptation problem. We applied the proposed method on speaker adaptation of a phoneme recog

  • Název v anglickém jazyce

    Adaptation of a Feedforward Artificial Neural Network Using a Linear Transform

  • Popis výsledku anglicky

    In this paper we present a novel method for adaptation of a multi-layer perceptron neural network (MLP ANN). Nowadays, the adaptation of the ANN is usually done as an incremental retraining either of a subset or the complete set of the ANN parameters. However, since sometimes the amount of the adaptation data is quite small, there is a fundamental drawback of such approach -- during retraining, the network parameters can be easily overfitted to the new data. There certainly are techniques that can helpovercome this problem (early-stopping, cross-validation), however application of such techniques leads to more complex and possibly more data hungry training procedure. The proposed method approaches the problem from a different perspective. We use the fact that in many cases we have an additional knowledge about the problem. Such additional knowledge can be used to limit the dimensionality of the adaptation problem. We applied the proposed method on speaker adaptation of a phoneme recog

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Lecture Notes in Computer Science

  • ISSN

    0302-9743

  • e-ISSN

  • Svazek periodika

    2010

  • Číslo periodika v rámci svazku

    6231

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus