Time-aware pageRank for bibliographic networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43914850" target="_blank" >RIV/49777513:23520/12:43914850 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.joi.2012.02.002" target="_blank" >http://dx.doi.org/10.1016/j.joi.2012.02.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.joi.2012.02.002" target="_blank" >10.1016/j.joi.2012.02.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time-aware pageRank for bibliographic networks
Popis výsledku v původním jazyce
In the past, recursive algorithms, such as PageRank originally conceived for the Web, have been successfully used to rank nodes in the citation networks of papers, authors, or journals. They have proved to determine prestige and not popularity, unlike citation counts. However, bibliographic networks, in contrast to the Web, have some specific features that enable the assigning of different weights to citations, thus adding more information to the process of finding prominence. For example, a citation between two authors may be weighed according to whether and when those two authors collaborated with each other, which is information that can be found in the co-authorship network. In this study, we define a couple of PageRank modifications that weigh citations between authors differently based on the information from the co-authorship graph. In addition, we put emphasis on the time of publications and citations. We test our algorithms on the Web of Science data of computer science journa
Název v anglickém jazyce
Time-aware pageRank for bibliographic networks
Popis výsledku anglicky
In the past, recursive algorithms, such as PageRank originally conceived for the Web, have been successfully used to rank nodes in the citation networks of papers, authors, or journals. They have proved to determine prestige and not popularity, unlike citation counts. However, bibliographic networks, in contrast to the Web, have some specific features that enable the assigning of different weights to citations, thus adding more information to the process of finding prominence. For example, a citation between two authors may be weighed according to whether and when those two authors collaborated with each other, which is information that can be found in the co-authorship network. In this study, we define a couple of PageRank modifications that weigh citations between authors differently based on the information from the co-authorship graph. In addition, we put emphasis on the time of publications and citations. We test our algorithms on the Web of Science data of computer science journa
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Informetrics
ISSN
1751-1577
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
370-388
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—