Walking algorithms for point location in TIN models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43915954" target="_blank" >RIV/49777513:23520/12:43915954 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10596-012-9305-3" target="_blank" >http://dx.doi.org/10.1007/s10596-012-9305-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10596-012-9305-3" target="_blank" >10.1007/s10596-012-9305-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Walking algorithms for point location in TIN models
Popis výsledku v původním jazyce
Finding which triangle in a planar or 2.5D triangle mesh contains a query point (so-called point location problem) is a frequent task in geosciences, especially when working with triangulated irregular network models. Usually, a large number of point locations has to be performed, and so there is a need for fast algorithms having minimal additional memory requirements and resistant to changes in the triangulation. So-called walking algorithms offer low complexity, easy implementation, and negligible additional memory requirements, which makes them suitable for such applications. In this article, we focus on these algorithms, summarize, and compare them with regard to their use in geosciences. Since such a summary has not been done yet, our article should serve those who are dealing with this problem in their application to decide which algorithm would be the best for their solution. Moreover, the influence of the triangulation type on the number of the visited triangles is discussed.
Název v anglickém jazyce
Walking algorithms for point location in TIN models
Popis výsledku anglicky
Finding which triangle in a planar or 2.5D triangle mesh contains a query point (so-called point location problem) is a frequent task in geosciences, especially when working with triangulated irregular network models. Usually, a large number of point locations has to be performed, and so there is a need for fast algorithms having minimal additional memory requirements and resistant to changes in the triangulation. So-called walking algorithms offer low complexity, easy implementation, and negligible additional memory requirements, which makes them suitable for such applications. In this article, we focus on these algorithms, summarize, and compare them with regard to their use in geosciences. Since such a summary has not been done yet, our article should serve those who are dealing with this problem in their application to decide which algorithm would be the best for their solution. Moreover, the influence of the triangulation type on the number of the visited triangles is discussed.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Geosciences
ISSN
1420-0597
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
853-869
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—