Optimized Acoustic Likelihoods Computation for NVIDIA and ATI/AMD Graphics Processors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43921648" target="_blank" >RIV/49777513:23520/12:43921648 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169951" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6169951</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TASL.2012.2190928" target="_blank" >10.1109/TASL.2012.2190928</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimized Acoustic Likelihoods Computation for NVIDIA and ATI/AMD Graphics Processors
Popis výsledku v původním jazyce
In this paper, we describe an optimized version of a Gaussian-mixture-based acoustic model likelihood evaluation algorithm for graphical processing units (GPUs). The evaluation of these likelihoods is one of the most computationally intensive parts of automatic speech recognizers, but it can be parallelized and offloaded to GPU devices. Our approach offers a significant speed-up over the recently published approaches, because it utilizes the GPU architecture in a more effective manner. All the recent implementations have been intended only for NVIDIA graphics processors, programmed either in CUDA or OpenCL GPU programming frameworks. We present results for both CUDA and OpenCL. Further, we have developed an OpenCL implementation optimized for ATI/AMD GPUs. Results suggest that even very large acoustic models can be used in real-time speech recognition engines on computers equipped with a low-end GPU or laptops. In addition, the completely asynchronous GPU management provides additional
Název v anglickém jazyce
Optimized Acoustic Likelihoods Computation for NVIDIA and ATI/AMD Graphics Processors
Popis výsledku anglicky
In this paper, we describe an optimized version of a Gaussian-mixture-based acoustic model likelihood evaluation algorithm for graphical processing units (GPUs). The evaluation of these likelihoods is one of the most computationally intensive parts of automatic speech recognizers, but it can be parallelized and offloaded to GPU devices. Our approach offers a significant speed-up over the recently published approaches, because it utilizes the GPU architecture in a more effective manner. All the recent implementations have been intended only for NVIDIA graphics processors, programmed either in CUDA or OpenCL GPU programming frameworks. We present results for both CUDA and OpenCL. Further, we have developed an OpenCL implementation optimized for ATI/AMD GPUs. Results suggest that even very large acoustic models can be used in real-time speech recognition engines on computers equipped with a low-end GPU or laptops. In addition, the completely asynchronous GPU management provides additional
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING
ISSN
1558-7916
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
1818-1828
Kód UT WoS článku
000302742400001
EID výsledku v databázi Scopus
—