Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Unsupervised Improving of Sentiment Analysis using Global Target Context

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F13%3A43919437" target="_blank" >RIV/49777513:23520/13:43919437 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://lml.bas.bg/ranlp2013/docs/RANLP_main.pdf" target="_blank" >http://lml.bas.bg/ranlp2013/docs/RANLP_main.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unsupervised Improving of Sentiment Analysis using Global Target Context

  • Popis výsledku v původním jazyce

    Current approaches to document-level sentiment analysis rely on local information, e.g., the words within the given document. We try to achieve better performance by incorporating global context of the sentiment target (e.g., a movie or a product). We assume that sentiment labels of reviews about the same target are often consistent in some way. We model this consistency by Dirichlet distribution over sentiment labels and use it together with Maximum entropy classifier to gain significant improvement. This unsupervised extension increases the classification F-measure by almost 3% absolute on both Czech and English movie review datasets and outperforms the current state of the art.

  • Název v anglickém jazyce

    Unsupervised Improving of Sentiment Analysis using Global Target Context

  • Popis výsledku anglicky

    Current approaches to document-level sentiment analysis rely on local information, e.g., the words within the given document. We try to achieve better performance by incorporating global context of the sentiment target (e.g., a movie or a product). We assume that sentiment labels of reviews about the same target are often consistent in some way. We model this consistency by Dirichlet distribution over sentiment labels and use it together with Maximum entropy classifier to gain significant improvement. This unsupervised extension increases the classification F-measure by almost 3% absolute on both Czech and English movie review datasets and outperforms the current state of the art.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of Recent Advances in Natural Language Processing

  • ISBN

  • ISSN

    1313-8502

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    122-128

  • Název nakladatele

    Incoma Ltd.

  • Místo vydání

    Shoumen

  • Místo konání akce

    Hissar

  • Datum konání akce

    7. 9. 2013

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku