General framework for mining, processing and storing large amounts of electronic texts for language modeling purposes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43919601" target="_blank" >RIV/49777513:23520/14:43919601 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10579-013-9246-z" target="_blank" >http://dx.doi.org/10.1007/s10579-013-9246-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10579-013-9246-z" target="_blank" >10.1007/s10579-013-9246-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
General framework for mining, processing and storing large amounts of electronic texts for language modeling purposes
Popis výsledku v původním jazyce
The paper describes a general framework for mining large amounts of text data from a defined set of Web pages. The acquired data are meant to constitute a corpus for training robust and reliable language models and thus the framework needs to also incorporate algorithms for appropriate text processing and duplicity detection in order to secure quality and consistency of the data. As we expect the resulting corpus to be very large, we have also implemented topic detection algorithms that allow us to automatically select subcorpora for domain-specific language models. The description of the framework architecture and the implemented algorithms is complemented with a detailed evaluation section. It analyses the basic properties of the gathered Czech corpus containing more than one billion text tokens collected using the described framework, shows the results of the topic detection methods and finally also describes the design and outcomes of the automatic speech recognition experiments wi
Název v anglickém jazyce
General framework for mining, processing and storing large amounts of electronic texts for language modeling purposes
Popis výsledku anglicky
The paper describes a general framework for mining large amounts of text data from a defined set of Web pages. The acquired data are meant to constitute a corpus for training robust and reliable language models and thus the framework needs to also incorporate algorithms for appropriate text processing and duplicity detection in order to secure quality and consistency of the data. As we expect the resulting corpus to be very large, we have also implemented topic detection algorithms that allow us to automatically select subcorpora for domain-specific language models. The description of the framework architecture and the implemented algorithms is complemented with a detailed evaluation section. It analyses the basic properties of the gathered Czech corpus containing more than one billion text tokens collected using the described framework, shows the results of the topic detection methods and finally also describes the design and outcomes of the automatic speech recognition experiments wi
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Language Resources and Evaluation
ISSN
1574-020X
e-ISSN
—
Svazek periodika
48
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
227-248
Kód UT WoS článku
000335779200003
EID výsledku v databázi Scopus
—