On Optimization Techniques for Calibration of Stochastic Volatility Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43923420" target="_blank" >RIV/49777513:23520/14:43923420 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Optimization Techniques for Calibration of Stochastic Volatility Models
Popis výsledku v původním jazyce
The aim of this paper is to study stochastic volatility (SV) models and their calibration to real market data. This task is formulated as the optimization problem and several optimization techniques are compared and used in order to minimize the difference between the observed market prices and the model prices. At first we demonstrate the complexity of the calibration process on the popular Heston model and we show how well the model can fit a particular set of market prices. This is ensured by using adeterministic grid which eliminates the initial guess sensitivity specific to this problem. The same level of errors can be reached by employing optimization techniques introduced in the paper, while also preserving time efficiency. We further apply thesame calibration procedures to the recent fractional stochastic volatility model, which is a jump-diffusion model of market dynamics with approximative fractional volatility. The novelty of this paper is especially in showing how the pro
Název v anglickém jazyce
On Optimization Techniques for Calibration of Stochastic Volatility Models
Popis výsledku anglicky
The aim of this paper is to study stochastic volatility (SV) models and their calibration to real market data. This task is formulated as the optimization problem and several optimization techniques are compared and used in order to minimize the difference between the observed market prices and the model prices. At first we demonstrate the complexity of the calibration process on the popular Heston model and we show how well the model can fit a particular set of market prices. This is ensured by using adeterministic grid which eliminates the initial guess sensitivity specific to this problem. The same level of errors can be reached by employing optimization techniques introduced in the paper, while also preserving time efficiency. We further apply thesame calibration procedures to the recent fractional stochastic volatility model, which is a jump-diffusion model of market dynamics with approximative fractional volatility. The novelty of this paper is especially in showing how the pro
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-11559S" target="_blank" >GA14-11559S: Analýza frakcionálních modelů stochastické volatility a jejich implementace v gridu</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Applied Numerical Mathematics and Scientific Computation
ISBN
978-1-61804-253-8
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
34-40
Název nakladatele
Europment
Místo vydání
Athens
Místo konání akce
Athens, Greece
Datum konání akce
28. 11. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—