Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Time-frequency methods for signal analysis in wind turbines

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926602" target="_blank" >RIV/49777513:23520/15:43926602 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1088/1742-6596/659/1/012012" target="_blank" >http://dx.doi.org/10.1088/1742-6596/659/1/012012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1742-6596/659/1/012012" target="_blank" >10.1088/1742-6596/659/1/012012</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Time-frequency methods for signal analysis in wind turbines

  • Popis výsledku v původním jazyce

    Since wind turbines became one of the most often source of renewable energy, appropriate health and condition monitoring systems are required. Especially proper monitoring of offshore plants is very significant because the accessibility is difficult and inspections are very costly. In comparison with conventional rotating machine vibration monitoring, where steady conditions and stationary signal are usually assumed, the wind turbines are characterized by unsteady conditions due to variable rotational speed. Hence the vibration signal is nonstationary and interpretation of signal signatures may be more complex. The common approach to analyze such nonstationary signals is the use of a time frequency method, usually Shor tTime Fourier Transform, which is the most popular one due to its simplicity. Nevertheless, there are other methods which can give a different view at the analyzed data and provide new information. This article investigates the potential use of some other time frequency methods, namely Wavelet Transf orm, Wigner-Ville distribution and Hilbert-Huang transform in wind plants monitoring systems and apply these methods to real measured data with additional simulated bearing fault signal. Finally, the mentioned methods are compared based on computational complexity, readability and interpretability. Though the last two criteria are very subjective, Shor tTime Fourier Transform was finally chosen as the most effective method followed by Wavelet Transform.

  • Název v anglickém jazyce

    Time-frequency methods for signal analysis in wind turbines

  • Popis výsledku anglicky

    Since wind turbines became one of the most often source of renewable energy, appropriate health and condition monitoring systems are required. Especially proper monitoring of offshore plants is very significant because the accessibility is difficult and inspections are very costly. In comparison with conventional rotating machine vibration monitoring, where steady conditions and stationary signal are usually assumed, the wind turbines are characterized by unsteady conditions due to variable rotational speed. Hence the vibration signal is nonstationary and interpretation of signal signatures may be more complex. The common approach to analyze such nonstationary signals is the use of a time frequency method, usually Shor tTime Fourier Transform, which is the most popular one due to its simplicity. Nevertheless, there are other methods which can give a different view at the analyzed data and provide new information. This article investigates the potential use of some other time frequency methods, namely Wavelet Transf orm, Wigner-Ville distribution and Hilbert-Huang transform in wind plants monitoring systems and apply these methods to real measured data with additional simulated bearing fault signal. Finally, the mentioned methods are compared based on computational complexity, readability and interpretability. Though the last two criteria are very subjective, Shor tTime Fourier Transform was finally chosen as the most effective method followed by Wavelet Transform.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Journal of Physics: Conference Series, Volume 659

  • ISBN

  • ISSN

    1742-6588

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Název nakladatele

    IOP Publishing

  • Místo vydání

    Bristol

  • Místo konání akce

    Pilsen

  • Datum konání akce

    19. 11. 2015

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000368103000012